Geometric deep learning as a potential tool for antimicrobial peptide prediction.

antimicrobial peptide classification antimicrobial peptide design antimicrobial peptide prediction explainable artificial intelligence geometric deep learning

Journal

Frontiers in bioinformatics
ISSN: 2673-7647
Titre abrégé: Front Bioinform
Pays: Switzerland
ID NLM: 9918227263306676

Informations de publication

Date de publication:
2023
Historique:
received: 03 05 2023
accepted: 13 06 2023
medline: 31 7 2023
pubmed: 31 7 2023
entrez: 31 7 2023
Statut: epublish

Résumé

Antimicrobial peptides (AMPs) are components of natural immunity against invading pathogens. They are polymers that fold into a variety of three-dimensional structures, enabling their function, with an underlying sequence that is best represented in a non-flat space. The structural data of AMPs exhibits non-Euclidean characteristics, which means that certain properties, e.g., differential manifolds, common system of coordinates, vector space structure, or translation-equivariance, along with basic operations like convolution, in non-Euclidean space are not distinctly established. Geometric deep learning (GDL) refers to a category of machine learning methods that utilize deep neural models to process and analyze data in non-Euclidean settings, such as graphs and manifolds. This emerging field seeks to expand the use of structured models to these domains. This review provides a detailed summary of the latest developments in designing and predicting AMPs utilizing GDL techniques and also discusses both current research gaps and future directions in the field.

Identifiants

pubmed: 37521317
doi: 10.3389/fbinf.2023.1216362
pii: 1216362
pmc: PMC10374423
doi:

Types de publication

Journal Article Review

Langues

eng

Pagination

1216362

Informations de copyright

Copyright © 2023 Fernandes, Cardoso, Gil-Ley, Luchi, da Silva, Macedo, de la Fuente-Nunez and Franco.

Déclaration de conflit d'intérêts

CF-N provides consulting services to Invaio Sciences and is a member of the Scientific Advisory Boards of Nowture S.L. and Phare Bio. The de la Fuente Lab has received research funding or in-kind donations from United Therapeutics, Strata Manufacturing PJSC, and Procter & Gamble, none of which were used in support of this work. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Références

Science. 2020 May 1;368(6490):
pubmed: 32355003
Bioinformatics. 2023 Jan 1;39(1):
pubmed: 36342186
Nat Commun. 2018 Apr 16;9(1):1490
pubmed: 29662055
Nat Biomed Eng. 2022 Jan;6(1):67-75
pubmed: 34737399
Sci Rep. 2016 Nov 02;6:35465
pubmed: 27804992
Commun Biol. 2021 Sep 9;4(1):1050
pubmed: 34504303
IEEE Trans Neural Netw. 2009 Jan;20(1):61-80
pubmed: 19068426
Protein Sci. 2020 Jan;29(1):36-42
pubmed: 31441165
BMC Genomics. 2022 Jan 25;23(1):77
pubmed: 35078402
mSystems. 2019 Jun 11;4(3):
pubmed: 31186311
Digit Discov. 2022 Mar 31;1(3):195-208
pubmed: 35769205
Biomolecules. 2021 Mar 22;11(3):
pubmed: 33810011
Antibiotics (Basel). 2022 Oct 21;11(10):
pubmed: 36290108
J Chem Inf Model. 2023 Feb 13;63(3):835-845
pubmed: 36724090
Infect Immun. 2021 Mar 17;89(4):
pubmed: 33558318
ACS Nano. 2021 Feb 23;15(2):2143-2164
pubmed: 33538585
Nucleic Acids Res. 2016 Jan 4;44(D1):D1119-26
pubmed: 26527728
Nucleic Acids Res. 2016 Jan 4;44(D1):D1087-93
pubmed: 26602694
Signal Transduct Target Ther. 2022 Feb 14;7(1):48
pubmed: 35165272
Int J Mol Sci. 2021 Oct 22;22(21):
pubmed: 34768832
Front Genet. 2022 Nov 03;13:1062576
pubmed: 36406112
Nat Methods. 2020 Feb;17(2):184-192
pubmed: 31819266
Brief Bioinform. 2021 Sep 2;22(5):
pubmed: 33774670
IEEE Trans Neural Netw Learn Syst. 2022 Dec;33(12):6999-7019
pubmed: 34111009
Membranes (Basel). 2022 Jul 14;12(7):
pubmed: 35877911
Int J Mol Sci. 2020 Feb 02;21(3):
pubmed: 32024233
EMBO Rep. 2020 Dec 3;21(12):e51034
pubmed: 33400359
Biochim Biophys Acta. 2016 May;1858(5):1061-9
pubmed: 26724202
Mol Divers. 2021 Aug;25(3):1315-1360
pubmed: 33844136
Mol Ther Nucleic Acids. 2020 Jun 5;20:882-894
pubmed: 32464552
Lancet Infect Dis. 2020 Sep;20(9):e216-e230
pubmed: 32653070

Auteurs

Fabiano C Fernandes (FC)

Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil.
Departamento de Ciência da Computação, Instituto Federal de Brasília, Brasília, Brazil.

Marlon H Cardoso (MH)

Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil.
S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.
Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Campo Grande, Mato Grosso do Sul, Brazil.

Abel Gil-Ley (A)

S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.

Lívia V Luchi (LV)

S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.

Maria G L da Silva (MGL)

Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil.

Maria L R Macedo (MLR)

Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Campo Grande, Mato Grosso do Sul, Brazil.

Cesar de la Fuente-Nunez (C)

Machine Biology Group, Departments of Psychiatry and Microbiology, Perelman School of Medicine, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States.
Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States.
Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, United States.

Octavio L Franco (OL)

Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil.
S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.

Classifications MeSH