Combining fragmentation method and high-performance computing: Geometry optimization and vibrational spectra of proteins.
Journal
The Journal of chemical physics
ISSN: 1089-7690
Titre abrégé: J Chem Phys
Pays: United States
ID NLM: 0375360
Informations de publication
Date de publication:
28 Jul 2023
28 Jul 2023
Historique:
received:
07
03
2023
accepted:
12
07
2023
medline:
1
8
2023
pubmed:
31
7
2023
entrez:
31
7
2023
Statut:
ppublish
Résumé
Exploring the structures and spectral features of proteins with advanced quantum chemical methods is an uphill task. In this work, a fragment-based molecular tailoring approach (MTA) is appraised for the CAM-B3LYP/aug-cc-pVDZ-level geometry optimization and vibrational infrared (IR) spectra calculation of ten real proteins containing up to 407 atoms and 6617 basis functions. The use of MTA and the inherently parallel nature of the fragment calculations enables a rapid and accurate calculation of the IR spectrum. The applicability of MTA to optimize the protein geometry and evaluate its IR spectrum employing a polarizable continuum model with water as a solvent is also showcased. The typical errors in the total energy and IR frequencies computed by MTA vis-à-vis their full calculation (FC) counterparts for the studied protein are 5-10 millihartrees and 5 cm-1, respectively. Moreover, due to the independent execution of the fragments, large-scale parallelization can also be achieved. With increasing size and level of theory, MTA shows an appreciable advantage in computer time as well as memory and disk space requirement over the corresponding FCs. The present study suggests that the geometry optimization and IR computations on the biomolecules containing ∼1000 atoms and/or ∼15 000 basis functions using MTA and HPC facility can be clearly envisioned in the near future.
Identifiants
pubmed: 37522406
pii: 2904839
doi: 10.1063/5.0149572
pii:
doi:
Substances chimiques
Proteins
0
Water
059QF0KO0R
Solvents
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2023 Author(s). Published under an exclusive license by AIP Publishing.