3D-printed holder for drawing highly reproducible pencil-on-paper electrochemical devices.

3D printing Cyclic voltammetry Electrode fabrication Hand-drawing Paper-based substrate Pencil-drawn

Journal

Mikrochimica acta
ISSN: 1436-5073
Titre abrégé: Mikrochim Acta
Pays: Austria
ID NLM: 7808782

Informations de publication

Date de publication:
31 Jul 2023
Historique:
received: 17 03 2023
accepted: 15 07 2023
medline: 31 7 2023
pubmed: 31 7 2023
entrez: 31 7 2023
Statut: epublish

Résumé

Pencil drawing is one of the simplest and most cost-effective ways of fabricating miniaturized electrodes on a paper substrate. However, it is limited by the lack of reproducibility regarding the electrode drawing process. A 3D-printed pencil holder (3DPH) is proposed here for simple, reproducible, and low-cost hand-drawn fabrication of paper-based electrochemical devices. 3DPH was designed to keep pressure and angulation of the graphite mine constant on the paper substrate using a micromechanical pencil regardless of the user/operator. This approach significantly improved the reproducibility and cost of making reliable pencil-drawn electrodes. The results showed high reproducibility and accuracy of the 3DPH-assisted electrodes prepared by 4 different operators in terms of sheet resistance and electrochemical behavior. Cyclic voltammetric (CV) curves in the presence of [Fe(CN)

Identifiants

pubmed: 37522993
doi: 10.1007/s00604-023-05920-x
pii: 10.1007/s00604-023-05920-x
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

338

Subventions

Organisme : Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
ID : 001

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.

Références

da Silva ETSG, Souto DEP, Barragan JTC et al (2017) Electrochemical biosensors in point-of-care devices: recent advances and future trends. Chem Electro Chem 4:778–794. https://doi.org/10.1002/celc.201600758
doi: 10.1002/celc.201600758
Khanmohammadi A, Jalili Ghazizadeh A, Hashemi P et al (2020) An overview to electrochemical biosensors and sensors for the detection of environmental contaminants. J Iran Chem Soc 17:2429–2447. https://doi.org/10.1007/s13738-020-01940-z
doi: 10.1007/s13738-020-01940-z
Lan T, Zhang J, Lu Y (2016) Transforming the blood glucose meter into a general healthcare meter for in vitro diagnostics in mobile health. Biotechnol Adv 34:331–341. https://doi.org/10.1016/j.biotechadv.2016.03.002
doi: 10.1016/j.biotechadv.2016.03.002 pubmed: 26946282 pmcid: 4833671
McGoldrick LK, Halámek J (2020) Recent advances in noninvasive biosensors for forensics, biometrics, and cybersecurity. Sensors (Switzerland) 20:1–15. https://doi.org/10.3390/s20215974
doi: 10.3390/s20215974
Boobphahom S, Ly MN, Soum V et al (2020) Recent advances in microfluidic paper-based analytical devices toward high-throughput screening. Molecules 25:1–36. https://doi.org/10.3390/molecules25132970
doi: 10.3390/molecules25132970
Patabadige DEW, Jia S, Sibbitts J et al (2016) Micro total analysis systems: fundamental advances and applications. Anal Chem 88:320–338. https://doi.org/10.1021/acs.analchem.5b04310
doi: 10.1021/acs.analchem.5b04310 pubmed: 26599485
Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem, In Ed 119:1340–1342. https://doi.org/10.1002/ange.200603817
doi: 10.1002/ange.200603817
Liana DD, Raguse B, Justin Gooding J, Chow E (2012) Recent advances in paper-based sensors. Sensors (Switzerland) 12:11505–11526. https://doi.org/10.3390/s120911505
doi: 10.3390/s120911505
Nie Z, Nijhuis CA, Gong J et al (2010) Electrochemical sensing in paper-based microfluidic devices. Lab Chip 10:477–483. https://doi.org/10.1039/b917150a
doi: 10.1039/b917150a pubmed: 20126688
Dungchai W, Chailapakul O, Henry CS (2009) Electrochemical detection for paper-based microfluidics. Anal Chem 81:5821–5826. https://doi.org/10.1021/ac9007573
doi: 10.1021/ac9007573 pubmed: 19485415
da Silva ETSG, Alves TMR, Kubota LT (2018) Direct toner printing: a versatile technology for easy fabrication of flexible miniaturized electrodes. Electroanalysis 30:345–352. https://doi.org/10.1002/elan.201700717
doi: 10.1002/elan.201700717
Silva ETSG, Santhiago M, Barragan JTC, Kubota LT (2014) Construction of a new versatile point-of-care testing device with electrochemical detection employing paper as a microfluidic platform. Anal Methods 6:6133–6136. https://doi.org/10.1039/C4AY00986J
doi: 10.1039/C4AY00986J
Faustino LC, Cunha JPC, Andrade APS et al (2022) Miniaturized electrochemical (bio)sensing devices going wearable. In: Advances in Bioelectrochemistry, vol 3. Springer International Publishing, Cham, pp 51–90
doi: 10.1007/978-3-030-97921-8_3
Bandodkar AJ, Imani S, Nuñez-Flores R et al (2018) Re-usable electrochemical glucose sensors integrated into a smartphone platform. Biosens Bioelectron 101:181–187. https://doi.org/10.1016/j.bios.2017.10.019
doi: 10.1016/j.bios.2017.10.019 pubmed: 29073519
Lowinsohn D, Bertotti M (2006) Electrochemical sensors: fundamentals and applications in microenvironments. Quim Nova 29:1318–1325. https://doi.org/10.1590/s0100-40422006000600029
doi: 10.1590/s0100-40422006000600029
Metters JP, Randviir EP, Banks CE (2014) Screen-printed back-to-back electroanalytical sensors. Analyst 139:5339–5349. https://doi.org/10.1039/C4AN01501K
doi: 10.1039/C4AN01501K pubmed: 25229068
Taleat Z, Khoshroo A, Mazloum-Ardakani M (2014) Screen-printed electrodes for biosensing: a review (2008–2013). Microchimica Acta 181:865–891. https://doi.org/10.1007/s00604-014-1181-1
doi: 10.1007/s00604-014-1181-1
Wang Y, Guo H, Chen J et al (2016) Paper-based inkjet-printed flexible electronic circuits. ACS Appl Mater Interfaces 8:26112–26118. https://doi.org/10.1021/acsami.6b06704
doi: 10.1021/acsami.6b06704 pubmed: 27582243
da Silva ETSG, Miserere S, Kubota LT, Merkoçi A (2014) Simple on-plastic/paper inkjet-printed solid-state Ag/AgCl pseudoreference electrode. Anal Chem 86:10531–10534. https://doi.org/10.1021/ac503029q
doi: 10.1021/ac503029q pubmed: 25286233
Jung W-B, Jang S, Cho S-Y et al (2020) Recent progress in simple and cost-effective top-down lithography for ≈10 nm scale nanopatterns: from edge lithography to secondary sputtering lithography. Adv Mater 32:1907101. https://doi.org/10.1002/adma.201907101
doi: 10.1002/adma.201907101
Bariya M, Shahpar Z, Park H et al (2018) Roll-to-roll gravure printed electrochemical sensors for wearable and medical devices. ACS Nano 12:6978–6987. https://doi.org/10.1021/acsnano.8b02505
doi: 10.1021/acsnano.8b02505 pubmed: 29924589
Ataide VN, Ameku WA, Bacil RP et al (2021) Enhanced performance of pencil-drawn paper-based electrodes by laser-scribing treatment. RSC Adv 11:1644–1653. https://doi.org/10.1039/D0RA08874A
doi: 10.1039/D0RA08874A pubmed: 35424136 pmcid: 8693669
Kumar R, Joanni E, Singh RK et al (2017) Direct laser writing of micro-supercapacitors on thick graphite oxide films and their electrochemical properties in different liquid inorganic electrolytes. J Colloid Interface Sci 507:271–278. https://doi.org/10.1016/j.jcis.2017.08.005
doi: 10.1016/j.jcis.2017.08.005 pubmed: 28802194
de Araujo WR, Frasson CMR, Ameku WA et al (2017) Single-step reagentless laser scribing fabrication of electrochemical paper-based analytical devices. Angew Chem Int Ed 56:15113–15117. https://doi.org/10.1002/anie.201708527
doi: 10.1002/anie.201708527
Kurra N, Kulkarni GU (2013) Pencil-on-paper: electronic devices. Lab Chip 13:2866–2873. https://doi.org/10.1039/c3lc50406a
doi: 10.1039/c3lc50406a pubmed: 23753048
Dossi N, Toniolo R, Pizzariello A et al (2013) Pencil-drawn paper supported electrodes as simple electrochemical detectors for paper-based fluidic devices. Electrophoresis 34:2085–2091. https://doi.org/10.1002/elps.201200425
doi: 10.1002/elps.201200425 pubmed: 23161669
Ataide VN, Arantes IVS, Mendes LF et al (2022) Review—a pencil drawing overview: from graphite to electrochemical sensors/biosensors applications. J Electrochem Soc 169:047524. https://doi.org/10.1149/1945-7111/ac68a0
doi: 10.1149/1945-7111/ac68a0
Li Z, Li F, Hu J et al (2015) Direct writing electrodes using a ball pen for paper-based point-of-care testing. Analyst 140:5526–5535. https://doi.org/10.1039/c5an00620a
doi: 10.1039/c5an00620a pubmed: 26079757
Santhiago M, Strauss M, Pereira MP et al (2017) Direct drawing method of graphite onto paper for high-performance flexible electrochemical sensors. ACS Appl Mater Interfaces 9:11959–11966. https://doi.org/10.1021/acsami.6b15646
doi: 10.1021/acsami.6b15646 pubmed: 28296386
Li W, Qian D, Li Y et al (2016) Fully-drawn pencil-on-paper sensors for electroanalysis of dopamine. J Electroanal Chem 769:72–79. https://doi.org/10.1016/j.jelechem.2016.03.027
doi: 10.1016/j.jelechem.2016.03.027
Dias AA, Cardoso TMG, Chagas CLS et al (2018) Detection of analgesics and sedation drugs in whiskey using electrochemical paper-based analytical devices. Electroanalysis 30:2250–2257. https://doi.org/10.1002/elan.201800308
doi: 10.1002/elan.201800308
Plesser HE (2018) Reproducibility vs. replicability: a brief history of a confused terminology. Front Neuroinform 11:76–93. https://doi.org/10.3389/fninf.2017.00076
doi: 10.3389/fninf.2017.00076 pubmed: 29403370 pmcid: 5778115
Bernalte E, Foster CW, Brownson DAC et al (2016) Pencil it in: exploring the feasibility of hand-drawn pencil electrochemical sensors and their direct comparison to screen-printed electrodes. Biosensors (Basel) 6:45–65. https://doi.org/10.3390/bios6030045
doi: 10.3390/bios6030045 pubmed: 27589815
Dossi N, Petrazzi S, Toniolo R et al (2017) Digitally controlled procedure for assembling fully drawn paper-based electroanalytical platforms. Anal Chem 89:10454–10460. https://doi.org/10.1021/acs.analchem.7b02521
doi: 10.1021/acs.analchem.7b02521 pubmed: 28862426
Rao LT, Rewatkar P, Dubey SK et al (2020) Automated pencil electrode formation platform to realize uniform and reproducible graphite electrodes on paper for microfluidic fuel cells. Sci Rep 10:1–9. https://doi.org/10.1038/s41598-020-68579-x
doi: 10.1038/s41598-020-68579-x
Cardoso RM, Kalinke C, Rocha RG et al (2020) Additive-manufactured (3D-printed) electrochemical sensors: a critical review. Anal Chim Acta 1118:73–91. https://doi.org/10.1016/j.aca.2020.03.028
doi: 10.1016/j.aca.2020.03.028 pubmed: 32418606
Ambrosi A, Pumera M (2016) 3D-printing technologies for electrochemical applications. Chem Soc Rev 45:2740–2755. https://doi.org/10.1039/c5cs00714c
doi: 10.1039/c5cs00714c pubmed: 27048921
Waheed S, Cabot JM, Macdonald NP et al (2016) 3D printed microfluidic devices: enablers and barriers. Lab Chip 16:1993–2013. https://doi.org/10.1039/c6lc00284f
doi: 10.1039/c6lc00284f pubmed: 27146365
Li X, Li H, Fan X et al (2020) 3D-printed stretchable micro-supercapacitor with remarkable areal performance. Adv Energy Mater 10:1–12. https://doi.org/10.1002/aenm.201903794
doi: 10.1002/aenm.201903794
Kalinke C, Neumsteir NV, Aparecido GDO et al (2020) Comparison of activation processes for 3D printed PLA-graphene electrodes: electrochemical properties and application for sensing of dopamine. Analyst 145:1207–1218. https://doi.org/10.1039/c9an01926j
doi: 10.1039/c9an01926j pubmed: 31858099
Dossi N, Toniolo R, Terzi F et al (2020) A simple strategy for easily assembling 3D printed miniaturized cells suitable for simultaneous electrochemical and spectrophotometric analyses. Electroanalysis 32:291–300. https://doi.org/10.1002/elan.201900461
doi: 10.1002/elan.201900461
Duarte LC, Baldo TA, Silva-Neto HA et al (2022) 3D printing of compact electrochemical cell for sequential analysis of steroid hormones. Sens Actuators B Chem 364:131850. https://doi.org/10.1016/j.snb.2022.131850
doi: 10.1016/j.snb.2022.131850
Chan HN, Tan MJA, Wu H (2017) Point-of-care testing: applications of 3D printing. Lab Chip 17:2713–2739. https://doi.org/10.1039/c7lc00397h
doi: 10.1039/c7lc00397h pubmed: 28702608
Brownson DAC, Kampouris DK, Banks CE (2012) Graphene electrochemistry: fundamental concepts through to prominent applications. Chem Soc Rev 41:6944–6976. https://doi.org/10.1039/C2CS35105F
doi: 10.1039/C2CS35105F pubmed: 22850696
Kim J, Ahn D, Sun J et al (2021) Vertically and horizontally drawing formation of graphite pencil electrodes on paper by frictional sliding for a disposable and foldable electronic device. ACS Omega 6:1960–1970. https://doi.org/10.1021/acsomega.0c04792
doi: 10.1021/acsomega.0c04792 pubmed: 33521436
Li W, Qian D, Wang Q et al (2016) Fully-drawn origami paper analytical device for electrochemical detection of glucose. Sens Actuators B Chem 231:230–238. https://doi.org/10.1016/j.snb.2016.03.031
doi: 10.1016/j.snb.2016.03.031
Dossi N, Toniolo R, Piccin E et al (2013) Pencil-drawn dual electrode detectors to discriminate between analytes comigrating on paper-based fluidic devices but undergoing electrochemical processes with different reversibility. Electroanalysis 25:2515–2522. https://doi.org/10.1002/elan.201300374
doi: 10.1002/elan.201300374
de França CCL, Meneses D, Silva ACA et al (2021) Development of novel paper-based electrochemical device modified with CdSe/CdS magic-sized quantum dots and application for the sensing of dopamine. Electrochim Acta 367:137486. https://doi.org/10.1016/j.electacta.2020.137486
doi: 10.1016/j.electacta.2020.137486
Zhao J, Zhang W, Sherrell P et al (2012) Carbon nanotube nanoweb-bioelectrode for highly selective dopamine sensing. ACS Appl Mater Interfaces 4:44–48. https://doi.org/10.1021/am201508d
doi: 10.1021/am201508d pubmed: 22148519
Alipour E, Majidi MR, Saadatirad A et al (2013) Simultaneous determination of dopamine and uric acid in biological samples on the pretreated pencil graphite electrode. Electrochim Acta 91:36–42. https://doi.org/10.1016/j.electacta.2012.12.079
doi: 10.1016/j.electacta.2012.12.079
Jackowska K, Krysinski P (2013) New trends in the electrochemical sensing of dopamine. Anal Bioanal Chem 405:3753–3771. https://doi.org/10.1007/s00216-012-6578-2
doi: 10.1007/s00216-012-6578-2 pubmed: 23241816
Hosseini M, Momeni MM, Faraji M (2010) An innovative approach to electro-oxidation of dopamine on titanium dioxide nanotubes electrode modified by gold particles. J Appl Electrochem 40:1421–1427. https://doi.org/10.1007/s10800-010-0119-5
doi: 10.1007/s10800-010-0119-5
Calabrese L, Caprì A, Fabiano F et al (2016) Electrochemical behaviour in synthetic saliva of silane coated Ni/Cu/Ni Nd-Fe-B magnet for dentistry applications. Materials and Corrosion 67:484–494. https://doi.org/10.1002/maco.201508508
doi: 10.1002/maco.201508508

Auteurs

Lucas C Faustino (LC)

Department of Chemistry, Federal University of Piauí - UFPI, Teresina, PI, 64049-550, Brazil.

João P C Cunha (JPC)

Department of Chemistry, State University of Piauí - UESPI, Teresina, PI, 64002-150, Brazil.

Welter Cantanhêde (W)

Department of Chemistry, Federal University of Piauí - UFPI, Teresina, PI, 64049-550, Brazil.

Lauro T Kubota (LT)

Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas - UNICAMP, Campinas, SP, 13084-971, Brazil.

Everson T S Gerôncio (ETS)

Department of Chemistry, Federal University of Piauí - UFPI, Teresina, PI, 64049-550, Brazil. everson.thiago@ufpi.edu.br.
Department of Chemistry, State University of Piauí - UESPI, Teresina, PI, 64002-150, Brazil. everson.thiago@ufpi.edu.br.

Classifications MeSH