GABAergic miR-34a regulates Dorsal Raphè inhibitory transmission in response to aversive, but not rewarding, stimuli.
Dorsal Raphè
GABA
microRNA
stress
Journal
Proceedings of the National Academy of Sciences of the United States of America
ISSN: 1091-6490
Titre abrégé: Proc Natl Acad Sci U S A
Pays: United States
ID NLM: 7505876
Informations de publication
Date de publication:
08 08 2023
08 08 2023
Historique:
pmc-release:
31
01
2024
medline:
2
8
2023
pubmed:
31
7
2023
entrez:
31
7
2023
Statut:
ppublish
Résumé
The brain employs distinct circuitries to encode positive and negative valence stimuli, and dysfunctions of these neuronal circuits have a key role in the etiopathogenesis of many psychiatric disorders. The Dorsal Raphè Nucleus (DRN) is involved in various behaviors and drives the emotional response to rewarding and aversive experiences. Whether specific subpopulations of neurons within the DRN encode these behaviors with different valence is still unknown. Notably, microRNA expression in the mammalian brain is characterized by tissue and neuronal specificity, suggesting that it might play a role in cell and circuit functionality. However, this specificity has not been fully exploited. Here, we demonstrate that microRNA-34a (miR-34a) is selectively expressed in a subpopulation of GABAergic neurons of the ventrolateral DRN. Moreover, we report that acute exposure to both aversive (restraint stress) and rewarding (chocolate) stimuli reduces GABA release in the DRN, an effect prevented by the inactivation of DRN miR-34a or its genetic deletion in GABAergic neurons in aversive but not rewarding conditions. Finally, miR-34a inhibition selectively reduced passive coping with severe stressors. These data support a role of miR-34a in regulating GABAergic neurotransmitter activity and behavior in a context-dependent manner and suggest that microRNAs could represent a functional signature of specific neuronal subpopulations with valence-specific activity in the brain.
Identifiants
pubmed: 37523544
doi: 10.1073/pnas.2301730120
pmc: PMC10410731
doi:
Substances chimiques
MicroRNAs
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2301730120Commentaires et corrections
Type : ErratumIn
Références
Neurobiol Stress. 2017 Mar 25;7:47-56
pubmed: 28377991
Neuron. 2022 Aug 17;110(16):2664-2679.e8
pubmed: 35700737
Nat Med. 2012 Jul;18(7):1087-94
pubmed: 22683779
Neuron. 2014 Aug 20;83(4):906-18
pubmed: 25123309
Learn Mem. 2015 Aug 18;22(9):452-60
pubmed: 26286655
Nature. 2023 Apr;616(7957):510-519
pubmed: 37020025
Cell. 2018 Oct 4;175(2):472-487.e20
pubmed: 30146164
Am J Psychiatry. 2014 Apr;171(4):395-7
pubmed: 24687194
Neuron. 2014 Jul 16;83(2):344-360
pubmed: 24952960
Neuron. 2012 Aug 9;75(3):363-79
pubmed: 22884321
Mol Neurobiol. 2020 Feb;57(2):823-836
pubmed: 31482401
Elife. 2020 Jun 22;9:
pubmed: 32568072
Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):21093-8
pubmed: 22160687
Neuropharmacology. 2021 Jun 1;190:108559
pubmed: 33845072
ACS Chem Neurosci. 2017 May 17;8(5):955-960
pubmed: 28287253
Elife. 2015 Feb 25;4:
pubmed: 25714923
Cell Rep. 2019 Jan 29;26(5):1128-1142.e7
pubmed: 30699344
Nat Commun. 2016 Jan 28;7:10503
pubmed: 26818705
Proc Natl Acad Sci U S A. 2023 Aug 8;120(32):e2301730120
pubmed: 37523544
Front Behav Neurosci. 2018 Jan 26;12:7
pubmed: 29434542
PLoS One. 2015 May 11;10(5):e0126956
pubmed: 25962147
Neuron. 2022 Sep 21;110(18):3036-3052.e5
pubmed: 35944526
Neuropsychopharmacology. 2019 Mar;44(4):793-804
pubmed: 30420603
Behav Brain Res. 2017 May 30;326:103-111
pubmed: 28274653
Science. 2010 Sep 17;329(5998):1537-41
pubmed: 20847275
Neuron. 2022 Aug 17;110(16):2519-2521
pubmed: 35981523
Trends Neurosci. 2012 Jul;35(7):395-402
pubmed: 22301434
Neural Plast. 2016;2016:6503162
pubmed: 27034848
J Neurophysiol. 2010 May;103(5):2652-63
pubmed: 20237311
Nat Rev Neurosci. 2006 Dec;7(12):911-20
pubmed: 17115073
Br J Pharmacol. 2006 Dec;149(7):861-9
pubmed: 17043669
Neuron. 2019 Aug 7;103(3):489-505.e7
pubmed: 31204082
Science. 2019 Feb 1;363(6426):538-542
pubmed: 30705194
PLoS One. 2008 Aug 22;3(8):e3044
pubmed: 18725944
Neuron. 2012 Jan 12;73(1):35-48
pubmed: 22243745
Neuropharmacology. 2016 Aug;107:305-316
pubmed: 27026110
J Neurosci. 2011 Oct 5;31(40):14191-203
pubmed: 21976504
J Chem Neuroanat. 2011 Jul;41(4):266-80
pubmed: 21658442
Nat Commun. 2017 Mar 31;8:14908
pubmed: 28361990
Mol Neurobiol. 2018 Sep;55(9):7401-7412
pubmed: 29417477
Mol Neurobiol. 2020 Mar;57(3):1432-1445
pubmed: 31754996
Elife. 2019 Aug 14;8:
pubmed: 31411560
Neurosci Biobehav Rev. 2012 Jan;36(1):79-89
pubmed: 21565217
PLoS One. 2015 Mar 17;10(3):e0120191
pubmed: 25781028
Nat Commun. 2020 Feb 27;11(1):1092
pubmed: 32107390
Proc Natl Acad Sci U S A. 2014 Apr 29;111(17):6479-84
pubmed: 24733892
Int J Neuropsychopharmacol. 2018 Jul 1;21(7):668-676
pubmed: 29688411
Neuropharmacology. 2011 Sep;61(3):524-43
pubmed: 21530552
J Mol Diagn. 2012 Jan;14(1):22-9
pubmed: 22166544
Nat Rev Neurosci. 2009 Dec;10(12):842-9
pubmed: 19888283
Elife. 2019 Oct 24;8:
pubmed: 31647409
J Neurophysiol. 2004 Dec;92(6):3532-7
pubmed: 15254076
Neuroscience. 2003;116(3):669-83
pubmed: 12573710
Rev Neurosci. 2019 Apr 24;30(3):289-303
pubmed: 30173207