Optimized conditions for gene transduction into primary immune cells using viral vectors.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
31 07 2023
31 07 2023
Historique:
received:
16
03
2023
accepted:
27
07
2023
medline:
2
8
2023
pubmed:
1
8
2023
entrez:
31
7
2023
Statut:
epublish
Résumé
Chimeric antigen receptor (CAR) T cell therapy has emerged as a promising modality for anti-cancer treatment. Its efficacy is quite remarkable in hematological tumors. Owing to their excellent clinical results, gene- modified cell therapies, including T cells, natural killer (NK) cells, and macrophages, are being actively studied in both academia and industry. However, the protocol to make CAR immune cells is too complicated, so it is still unclear how to efficiently produce the potent CAR immune cells. To manufacture effective CAR immune cells, we need to be aware of not only how to obtain highly infective viral particles, but also how to transduce CAR genes into immune cells. In this paper, we provide detailed information on spinoculation, which is one of the best known protocols to transduce genes into immune cells, in a methodological view. Our data indicate that gene transduction is significantly dependent on speed and duration of centrifugation, concentration and number of viral particles, the concentration of polybrene, and number of infected immune cells. In addition, we investigated on the optimal polyethylene glycol (PEG) solution to concentrate the viral supernatant and the optimized DNA ratios transfected into 293T cells to produce high titer of viral particles. This study provides useful information for practical production of the gene-modified immune cells using viral vectors.
Identifiants
pubmed: 37524755
doi: 10.1038/s41598-023-39597-2
pii: 10.1038/s41598-023-39597-2
pmc: PMC10390464
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
12365Informations de copyright
© 2023. The Author(s).
Références
J Vis Exp. 2018 Jan 15;(131):
pubmed: 29364266
Mol Ther Methods Clin Dev. 2018 Oct 17;12:19-31
pubmed: 30417026
Hematol Transfus Cell Ther. 2020 Apr - Jun;42(2):150-158
pubmed: 31676276
Nat Biotechnol. 2020 Aug;38(8):947-953
pubmed: 32361713
Biochem Biophys Res Commun. 2016 Apr 22;473(1):73-79
pubmed: 26993168
Gene Ther. 2020 Feb;27(1-2):85-95
pubmed: 31919448
J Gene Med. 2018 Jul;20(7-8):e3027
pubmed: 29851200
Adv Biosyst. 2020 Jun;4(6):e1900288
pubmed: 32390316
Hum Gene Ther. 2007 Dec;18(12):1253-60
pubmed: 18052719
Cancer Immunol Immunother. 2016 Dec;65(12):1433-1450
pubmed: 27613725
J Clin Oncol. 2020 Nov 10;38(32):3805-3815
pubmed: 33021872
Sci Rep. 2015 Nov 12;5:16532
pubmed: 26559140
Clin Cancer Res. 2018 Mar 15;24(6):1277-1286
pubmed: 29138340
Mol Ther Methods Clin Dev. 2017 Mar 08;5:22-30
pubmed: 28480301
Front Immunol. 2020 Jan 24;10:3123
pubmed: 32117200
Virol Sin. 2018 Apr;33(2):142-152
pubmed: 29541943
Front Immunol. 2019 Dec 16;10:2873
pubmed: 31921138
Mol Ther Methods Clin Dev. 2019 Mar 16;13:371-379
pubmed: 30997367
N Engl J Med. 2020 Feb 6;382(6):545-553
pubmed: 32023374
Mol Ther. 2016 Aug;24(7):1216-26
pubmed: 27138041
BMC Mol Cell Biol. 2021 Nov 23;22(1):57
pubmed: 34814824
Am J Hematol. 2019 Dec;94(12):E322-E325
pubmed: 31489688
Hum Gene Ther. 2017 Oct;28(10):897-913
pubmed: 28810809
J Virol. 2011 Oct;85(19):9824-33
pubmed: 21795326
Stem Cells Transl Med. 2012 Dec;1(12):886-97
pubmed: 23283550
J Immunother Cancer. 2017 Mar 21;5:22
pubmed: 28344808
J Transl Med. 2021 Nov 24;19(1):474
pubmed: 34819105
Hum Gene Ther. 2017 Oct;28(10):914-925
pubmed: 28847167