Optical coherence tomographic findings of glaucomatous eyes with papillomacular retinoschisis.
Journal
Eye (London, England)
ISSN: 1476-5454
Titre abrégé: Eye (Lond)
Pays: England
ID NLM: 8703986
Informations de publication
Date de publication:
31 Jul 2023
31 Jul 2023
Historique:
received:
29
12
2022
accepted:
14
07
2023
revised:
25
06
2023
medline:
1
8
2023
pubmed:
1
8
2023
entrez:
31
7
2023
Statut:
aheadofprint
Résumé
To investigate the relationship between the shape of the optic nerve head (ONH) margin detected by optical coherence tomography (OCT) and the clinical characteristics of glaucomatous eyes with papillomacular retinoschisis (PMRS). The medical record of patients with a PMRS in a glaucomatous eye were reviewed. The eyes were placed into two groups determined by the shape of the ONH margin in the OCT images; eyes with an externally oblique ONH margin (Group 1) and eyes with an internally oblique ONH margin (Group 2). We compared the clinical characteristics of the PMRS of these two groups. We studied 31 eyes of 29 patients with PMRS and glaucoma with 24 eyes in Group 1 and 7 eyes in Group 2. The optic nerve fibre layer schisis on the lamina cribrosa (LC), beta zone, and gamma zone, and found that the LC defects were detected significantly more frequently in Group 1 than in Group 2 eyes (P < 0.05). A retinal nerve fibre schisis was observed around the ONH significantly more frequently in Group 2 than in Group 1 eyes (P < 0.01). The cases of glaucoma-associated PMRS could be classified into two groups according to the obliquity of the ONH. They had differences in the findings of OCT and FA. The possibility that the mechanism of PMRS development is different in both groups is suggested.
Identifiants
pubmed: 37524830
doi: 10.1038/s41433-023-02671-0
pii: 10.1038/s41433-023-02671-0
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2023. The Author(s), under exclusive licence to The Royal College of Ophthalmologists.
Références
Hirakata A, Okada AA, Hida T. Long-term results of vitrectomy without laser treatment for macular detachment associated with an optic disc pit. Ophthalmology. 2005;112:1430–5.
doi: 10.1016/j.ophtha.2005.02.013
pubmed: 16024082
Kalogeropoulos D, Ch'ng SW, Lee R, Elaraoud I, Purohit M, Felicida V. Optic disc pit maculopathy: a review. asia pac. J Ophthalmol (Philos). 2019;8:247–55.
Fujimoto S, Kokame GT, Ryan EH, Johnson W, Hirakata A, Shirriff A. Macular retinoschisis from optic disc without a visible optic pit or advanced glaucomatous cupping (No Optic Pit Retinoschisis [NOPIR]). Ophthalmol Retina. 2023. https://doi.org/10.1016/j.oret.
Hollander DA, Barricks ME, Duncan JL, Irvine AR. Macular schisis detachment associated with angle-closure glaucoma. Arch Ophthalmol. 2005;123:270–2.
doi: 10.1001/archopht.123.2.270
pubmed: 15710832
Zumbro DS, Jampol LM, Folk JC, Olivier MM, Anderson-Nelson S. Macular schisis and detachment associated with presumed acquired enlarged optic nerve head cups. Am J Ophthalmol. 2007;144:70–4.
doi: 10.1016/j.ajo.2007.03.027
pubmed: 17493573
Zhao M, Li X. Macular retinoschisis associated with normal tension glaucoma. Graefe’s Arch Clin Exp Ophthalmol. 2011;249:1255–8.
doi: 10.1007/s00417-011-1668-y
Orazbekov L, Yasukawa T, Hirano Y, Ogura S, Usui H, Nozaki M. Vitrectomy without gas tamponade for macular retinoschisis associated with normal-tension glaucoma. Ophthalmic Surg Lasers Imaging Retin. 2015;46:107–10.
doi: 10.3928/23258160-20150101-21
Ishikawa K, Fukui T, Nakao S, Shiose S, Sonoda KH. Vitrectomy with peripapillary internal limiting membrane peeling for macular retinoschisis associated with normal-tension glaucoma. Am J Ophthalmol Case Rep. 2020;18:100663.
doi: 10.1016/j.ajoc.2020.100663
pubmed: 32215342
pmcid: 7090242
Moreno-Lopez M, Gonzalez-Lopez JJ, Jarrin E, Bertrand J. Retinoschisis and macular detachment associated with acquired enlarged optic disc cup. Clin Ophthalmol. 2012;6:433–6.
doi: 10.2147/OPTH.S29857
pubmed: 22536032
pmcid: 3334215
Ornek N, Buyuktortop N, Ornek K. Peripapillary and macular retinoschisis in a patient with pseudoexfoliation glaucoma. BMJ Case Rep. 2013. https://doi.org/10.1136/bcr-2013-009469 .
Takashina S, Saito W, Noda K, Katai M, Ishida S. Membrane tissue on the optic disc may cause macular schisis associated with a glaucomatous optic disc without optic disc pits. Clin Ophthalmol. 2013;7:883–7.
doi: 10.2147/OPTH.S42085
pubmed: 23690678
pmcid: 3656919
Yoshikawa T, Yamanaka C, Kinoshita T, Morikawa S, Ogata N. Macular retinoschisis in eyes with glaucomatous optic neuropathy: vitrectomy and natural course. Graefe’s Arch Clin Exp Ophthalmol. 2018;256:281–8.
doi: 10.1007/s00417-017-3855-y
Inoue M, Itoh Y, Rii T, Kita Y, Hirota K, Kunita D, et al. Spontaneous resolution of peripapillary retinoschisis associated with glaucomatous optic neuropathy. Acta Ophthalmol. 2015;93:e317–8.
doi: 10.1111/aos.12568
pubmed: 25384451
Inoue M, Itoh Y, Rii T, Kita Y, Hirota K, Kunita D, et al. Macular retinoschisis associated with glaucomatous optic neuropathy in eyes with normal intraocular pressure. Graefe’s Arch Clin Exp Ophthalmol. 2015;253:1447–56.
doi: 10.1007/s00417-014-2830-0
Yoshitake T, Nakanishi H, Setoguchi Y, Kuroda K, Amemiya K, Taniguchi M, et al. Bilateral papillomacular retinoschisis and macular detachment accompanied by focal lamina cribrosa defect in glaucomatous eyes. J Ophthalmol. 2014;58:435–42.
Roberts JD, Hunter A, Mega J, Cesaro T, Greenberg PB. Case report: glaucoma-associated peripapillary retinoschisis with corresponding lamina cribrosa defect. Optom Vis Sci. 2020;97:104–9.
doi: 10.1097/OPX.0000000000001474
pubmed: 32011583
Grewal DS, Merlau DJ, Giri P, Munk MR, Fawzi AA, Jampol LM, et al. Peripapillary retinal splitting visualized on OCT in glaucoma and glaucoma suspect patients. PLoS One. 2017;12:e0182816.
doi: 10.1371/journal.pone.0182816
pubmed: 28832670
pmcid: 5568282
Haruta M, Handa S, Yoshida S. Papillomacular retinoschisis associated with glaucoma: response to topical carbonic anhydrase inhibitor. Am J Ophthalmol Case Rep. 2020;19:100741.
doi: 10.1016/j.ajoc.2020.100741
pubmed: 32490282
pmcid: 7260430
Lampert PW, Vogel MH, Zimmerman LE. Pathology of the optic nerve in experimental acute glaucoma. electron microscopic studies. Investig Ophthalmol. 1968;7:199–213.
Lee JH, Park HY, Baek J, Lee WK. Alterations of the lamina cribrosa are associated with peripapillary retinoschisis in glaucoma and pachychoroid spectrum disease. Ophthalmology. 2016;123:2066–76.
doi: 10.1016/j.ophtha.2016.06.033
pubmed: 27506483
Abe RY, Gracitelli CP, Diniz-Filho A, Tatham AJ, Medeiros FA. Lamina cribrosa in glaucoma: diagnosis and monitoring. Curr Ophthalmol Rep. 2015;3:74–84.
doi: 10.1007/s40135-015-0067-7
pubmed: 26052477
pmcid: 4455897
Kiumehr S, Park SC, Syril D, Teng CC, Tello C, Liebmann JM, et al. In vivo evaluation of focal lamina cribrosa defects in glaucoma. Arch Ophthalmol. 2012;130:552–9.
doi: 10.1001/archopthalmol.2011.1309
pubmed: 22232364
Han JC, Choi JH, Park DY, Lee EJ, Kee C. Border tissue morphology is spatially associated with focal lamina cribrosa defect and deep-layer microvasculature dropout in open-angle glaucoma. Am J Ophthalmol. 2019;203:89–102.
doi: 10.1016/j.ajo.2019.02.023
pubmed: 30825418
Strouthidis NG, Yang H, Reynaud JF, Grimm JL, Gardiner SK, Fortune B, et al. Comparison of clinical and spectral domain optical coherence tomography optic disc margin anatomy. Invest Ophthalmol Vis Sci. 2009;50:4709–18.
doi: 10.1167/iovs.09-3586
pubmed: 19443718
Park SC, De Moraes CG, Tello C, Liebmann JM, Ritch R. In-vivo microstructural anatomy of beta-zone parapapillary atrophy in glaucoma. Investig Ophthalmol Vis Sci. 2010;51:6408–13.
doi: 10.1167/iovs.09-5100
Han JC, Choi JH, Park DY, Lee EJ, Kee C. Deep optic nerve head morphology is associated with pattern of glaucomatous visual field defect in open-angle glaucoma. Invest Ophthalmol Vis Sci. 2018;59:3842–51.
doi: 10.1167/iovs.18-24588
pubmed: 30073358
Park DY, Noh H, Kee C, Han JC. Topographic relationships among deep optic nerve head parameters in patients with primary open-angle glaucoma. J Clin Med. 2022;11:1320–31.
doi: 10.3390/jcm11051320
pubmed: 35268410
pmcid: 8910857
Choy YJ, Kwun Y, Han JC, Kee C. Comparison of visual field progression between temporally tilted disc and nontilted disc, in patients with normal tension glaucoma. Eye. 2015;29:1308–14.
doi: 10.1038/eye.2015.17
pubmed: 25721518
pmcid: 4815697
Hayashi K, Tomidokoro A, Lee KY, Konno S, Saito H, Mayama C, et al. Spectral-domain optical coherence tomography of β-zone peripapillary atrophy: influence of myopia and glaucoma. Investig Ophthalmol Vis Sci. 2012;53:1499–505.
doi: 10.1167/iovs.11-8572
Dai Y, Jonas JB, Huang H, Wang M, Sun X. Microstructure of parapapillary atrophy: beta zone and gamma zone. Investig Ophthalmol Vis Sci. 2013;54:2013–8.
doi: 10.1167/iovs.12-11255
Sano M, Hirakata A, Kita Y, Itoh Y, Koto T, Inoue M. Risk factors for failure of resolving optic disc pit maculopathy after primary vitrectomy without laser photocoagulation. J Ophthalmol. 2021;65:786–96.
Jain N, Johnson MW. Pathogenesis and treatment of maculopathy associated with cavitary optic disc anomalies. Am J Ophthalmol. 2014;158:423–35.
doi: 10.1016/j.ajo.2014.06.001
pubmed: 24932988
Ohno-Matsui K, Hirakata A, Inoue M, Akiba M, Ishibashi T. Evaluation of congenital optic disc pits and optic disc colobomas by swept-source optical coherence tomography. Investig Ophthalmol Vis Sci. 2013;54:7769–78.
doi: 10.1167/iovs.13-12901
Benarroch EE. Circumventricular organs: receptive and homeostatic functions and clinical implications. Neurology. 2011;77:1198–204.
doi: 10.1212/WNL.0b013e31822f04a0
pubmed: 21931109
Fortune B. Pulling and tugging on the retina: mechanical impact of glaucoma beyond the optic nerve head. Investig Ophthalmol Vis Sci. 2019;60:26–35.
doi: 10.1167/iovs.18-25837
Guo L, Normando EM, Nizari S, Lara D, Cordeiro MF. Tracking longitudinal retinal changes in experimental ocular hypertension using the cSLO and spectral domain-OCT. Investig Ophthalmol Vis Sci. 2010;51:6504–13.
doi: 10.1167/iovs.10-5551