ALKBH5 facilitates CYP1B1 mRNA degradation via m6A demethylation to alleviate MSC senescence and osteoarthritis progression.


Journal

Experimental & molecular medicine
ISSN: 2092-6413
Titre abrégé: Exp Mol Med
Pays: United States
ID NLM: 9607880

Informations de publication

Date de publication:
08 2023
Historique:
received: 24 09 2022
accepted: 24 05 2023
revised: 01 04 2023
medline: 4 9 2023
pubmed: 1 8 2023
entrez: 31 7 2023
Statut: ppublish

Résumé

Improving health and delaying aging is the focus of medical research. Previous studies have shown that mesenchymal stem cell (MSC) senescence is closely related to organic aging and the development of aging-related diseases such as osteoarthritis (OA). m6A is a common RNA modification that plays an important role in regulating cell biological functions, and ALKBH5 is one of the key m6A demethylases. However, the role of m6A and ALKBH5 in MSC senescence is still unclear. Here, we found that the m6A level was enhanced and ALKBH5 expression was decreased in aging MSCs induced by multiple replications, H

Identifiants

pubmed: 37524872
doi: 10.1038/s12276-023-01059-0
pii: 10.1038/s12276-023-01059-0
pmc: PMC10474288
doi:

Substances chimiques

Hydrogen Peroxide BBX060AN9V
RNA, Messenger 0
AlkB Homolog 5, RNA Demethylase EC 1.14.11.-
6-methyladenine W7IBY2BGAX
Cytochrome P-450 CYP1B1 EC 1.14.14.1

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1743-1756

Informations de copyright

© 2023. The Author(s).

Références

He, S. & Sharpless, N. E. Senescence in health and disease. Cell 169, 1000–1011 (2017).
pubmed: 28575665 pmcid: 5643029 doi: 10.1016/j.cell.2017.05.015
Muñoz-Espín, D. & Serrano, M. Cellular senescence: from physiology to pathology. Nat. Rev. Mol. Cell Biol. 15, 482–96 (2014).
pubmed: 24954210 doi: 10.1038/nrm3823
Hernandez-Segura, A., Nehme, J. & Demaria, M. Hallmarks of cellular senescence. Trends Cell Biol 28, 436–453 (2018).
pubmed: 29477613 doi: 10.1016/j.tcb.2018.02.001
Wang, W. et al. A genome-wide CRISPR-based screen identifies KAT7 as a driver of cellular senescence. Sci. Transl. Med. 13, eabd2655 (2021).
pubmed: 33408182 doi: 10.1126/scitranslmed.abd2655
Ding, D. C., Shyu, W. C. & Lin, S. Z. Mesenchymal stem cells. Cell Transplant 20, 5–14 (2011).
pubmed: 21396235 doi: 10.3727/096368910X
Soliman, H. et al. Multipotent stromal cells: one name, multiple identities. Cell Stem Cell 28, 1690–1707 (2021).
pubmed: 34624231 doi: 10.1016/j.stem.2021.09.001
Li, Y. et al. Senescence of mesenchymal stem cells (Review). Int. J. Mol. Med. 39, 775–782 (2017).
pubmed: 28290609 doi: 10.3892/ijmm.2017.2912
Malaise, O. et al. Mesenchymal stem cell senescence alleviates their intrinsic and seno-suppressive paracrine properties contributing to osteoarthritis development. Aging 11, 9128–9146 (2019).
pubmed: 31644429 pmcid: 6834426 doi: 10.18632/aging.102379
Deng, P. et al. Loss of KDM4B exacerbates bone-fat imbalance and mesenchymal stromal cell exhaustion in skeletal aging. Cell Stem Cell 28, 1057–1073 (2021).
pubmed: 33571444 pmcid: 8178178 doi: 10.1016/j.stem.2021.01.010
Huang, H., Weng, H. & Chen, J. The biogenesis and precise control of RNA m
pubmed: 31810533 doi: 10.1016/j.tig.2019.10.011
Meyer, K. D. & Jaffrey, S. R. Rethinking m
pubmed: 28759256 pmcid: 5963928 doi: 10.1146/annurev-cellbio-100616-060758
Shafik, A. M. et al. N6-methyladenosine dynamics in neurodevelopment and aging, and its potential role in Alzheimer’s disease. Genome Biol. 22, 17 (2021).
pubmed: 33402207 pmcid: 7786910 doi: 10.1186/s13059-020-02249-z
Wang, J. et al. The biological function of m
pubmed: 32742194 pmcid: 7388453 doi: 10.1186/s12935-020-01450-1
Yu, F. et al. Post-translational modification of RNA m
pubmed: 34048572 pmcid: 8191756 doi: 10.1093/nar/gkab415
Murray, G. I., Melvin, W. T., Greenlee, W. F. & Burke, M. D. Regulation, function, and tissue-specific expression of cytochrome P450 CYP1B1. Annu. Rev. Pharmacol. Toxicol. 41, 297–316 (2001).
pubmed: 11264459 doi: 10.1146/annurev.pharmtox.41.1.297
Dragin, N. et al. Phenotype of the Cyp1a1/1a2/1b1-/- triple-knockout mouse. Mol. Pharmacol. 73, 1844–1856 (2008).
pubmed: 18372398 doi: 10.1124/mol.108.045658
Lu, Y. et al. Procaspase-1 patrolled to the nucleus of proatherogenic lipid LPC-activated human aortic endothelial cells induces ROS promoter CYP1B1 and strong inflammation. Redox Biol. 47, 102142 (2021).
pubmed: 34598017 pmcid: 8487079 doi: 10.1016/j.redox.2021.102142
Ye, G. et al. Oxidative stress-mediated mitochondrial dysfunction facilitates mesenchymal stem cell senescence in ankylosing spondylitis. Cell Death Dis. 11, 775 (2020).
pubmed: 32943613 pmcid: 7498590 doi: 10.1038/s41419-020-02993-x
Dominici, M. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 8, 315–317 (2006).
pubmed: 16923606 doi: 10.1080/14653240600855905
Li, Z. et al. The N
pubmed: 34088896 pmcid: 8178363 doi: 10.1038/s41419-021-03869-4
Glasson, S. S., Chambers, M. G., Van Den Berg, W. B. & Little, C. B. The OARSI histopathology initiative - Recommendations for histological assessments of osteoarthritis in the mouse. Osteoarthr. Cartil. 18, S17–S23 (2010).
doi: 10.1016/j.joca.2010.05.025
D’Adda Di Fagagna, F. et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 426, 194–198 (2003).
pubmed: 14608368 doi: 10.1038/nature02118
Li, F., Zhu, W. & Gonzalez, F. J. Potential role of CYP1B1 in the development and treatment of metabolic diseases. Pharmacol. Ther. 178, 18–30 (2017).
pubmed: 28322972 pmcid: 5600638 doi: 10.1016/j.pharmthera.2017.03.007
Tang, Y. et al. m6A-Atlas: a comprehensive knowledgebase for unraveling the N6-methyladenosine (m
pubmed: 32821938 doi: 10.1093/nar/gkaa692
Zheng, Y. et al. m6AVar: a database of functional variants involved in m
pubmed: 29036329 doi: 10.1093/nar/gkx895
Zhou, Y., Zeng, P., Li, Y. H., Zhang, Z. & Cui, Q. SRAMP: prediction of mammalian N
pubmed: 26896799 pmcid: 4889921 doi: 10.1093/nar/gkw104
Huang, H. et al. Recognition of RNA N
pubmed: 29476152 pmcid: 5826585 doi: 10.1038/s41556-018-0045-z
Deng, L. et al. Stabilizing heterochromatin by DGCR8 alleviates senescence and osteoarthritis. Nat. Commun. 10, 3329 (2019).
pubmed: 31350386 pmcid: 6659673 doi: 10.1038/s41467-019-10831-8
Zhen, G. et al. Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat. Med. 19, 704–712 (2013).
pubmed: 23685840 pmcid: 3676689 doi: 10.1038/nm.3143
Xiao, Y. Z. et al. Reducing hypothalamic stem cell senescence protects against aging-associated physiological decline. Cell Metab. 31, 534–548.e5 (2020).
pubmed: 32004475 doi: 10.1016/j.cmet.2020.01.002
Zhang, H. et al. NAD
pubmed: 27127236 doi: 10.1126/science.aaf2693
Bertero, A. et al. The SMAD2/3 interactome reveals that TGFβ controls m
pubmed: 29489750 pmcid: 5951268 doi: 10.1038/nature25784
Wu, Y. et al. Mettl3-mediated m
pubmed: 30429466 pmcid: 6235890 doi: 10.1038/s41467-018-06898-4
Wu, Z. et al. METTL3 counteracts premature aging via m
pubmed: 33035345 pmcid: 7641765 doi: 10.1093/nar/gkaa816
Zhang, Y. et al. METTL3 alleviates D-gal-induced renal tubular epithelial cellular senescence via promoting miR-181a maturation. Mech Ageing Dev. 210, 111774 (2023).
pubmed: 36608773 doi: 10.1016/j.mad.2022.111774
Arcidiacono, O. A., Krejčí, J. & Bártová, E. The distinct function and localization of METTL3/METTL14 and METTL16 enzymes in cardiomyocytes. Int. J. Mol. Sci. 21, 8139 (2020).
pubmed: 33143367 pmcid: 7663386 doi: 10.3390/ijms21218139
Yang, Y., Hsu, P. J., Chen, Y. S. & Yang, Y. G. Dynamic transcriptomic m
pubmed: 29789545 pmcid: 5993786 doi: 10.1038/s41422-018-0040-8
Ramanan, V. K. et al. Variants in PPP2R2B and IGF2BP3 are associated with higher tau deposition. Brain Commun. 2, fcaa159 (2020).
pubmed: 33426524 pmcid: 7780444 doi: 10.1093/braincomms/fcaa159
Sarparast, M., Dattmore, D., Alan, J. & Lee, K. S. S. Cytochrome P450 metabolism of polyunsaturated fatty acids and neurodegeneration. Nutrients 12, 3523 (2020).
pubmed: 33207662 pmcid: 7696575 doi: 10.3390/nu12113523
Yang, Y. et al. Endothelium-specific CYP2J2 overexpression attenuates age-related insulin resistance. Aging Cell 17, e12718 (2018).
pubmed: 29318723 pmcid: 5847864 doi: 10.1111/acel.12718
Bansal, S. et al. Mitochondrial targeting of cytochrome P450 (CYP) 1B1 and its role in polycyclic aromatic hydrocarbon-induced mitochondrial dysfunction. J. Biol. Chem. 289, 9936–9951 (2014).
pubmed: 24497629 pmcid: 3975038 doi: 10.1074/jbc.M113.525659
Letts, J. A. & Sazanov, L. A. Clarifying the supercomplex: the higher-order organization of the mitochondrial electron transport chain. Nat. Struct. Mol. Biol. 24, 800–808 (2017).
pubmed: 28981073 doi: 10.1038/nsmb.3460
Zhang, L. et al. Structural insight into the electron transfer pathway of a self-sufficient P450 monooxygenase. Nat. Commun. 11, 2676 (2020).
pubmed: 32472090 pmcid: 7260179 doi: 10.1038/s41467-020-16500-5
Yoshigae, Y., Kent, U. M. & Hollenberg, P. F. Role of the highly conserved threonine in cytochrome P450 2E1: prevention of H
pubmed: 23750736 doi: 10.1021/bi4004843
Sanchez-Lopez, E., Coras, R., Torres, A., Lane, N. E. & Guma, M. Synovial inflammation in osteoarthritis progression. Nat. Rev. Rheumatol. 18, 258–275 (2022).
pubmed: 35165404 pmcid: 9050956 doi: 10.1038/s41584-022-00749-9
Byun, H. O., Lee, Y. K., Kim, J. M. & Yoon, G. From cell senescence to age-related diseases: differential mechanisms of action of senescence-associated secretory phenotypes. BMB Rep. 48, 549–558 (2015).
pubmed: 26129674 pmcid: 4911181 doi: 10.5483/BMBRep.2015.48.10.122
Yin, Y., Chen, H., Wang, Y., Zhang, L. & Wang, X. Roles of extracellular vesicles in the aging microenvironment and age-related diseases. J. Extracell. Vesicles 10, e12154 (2021).
pubmed: 34609061 pmcid: 8491204 doi: 10.1002/jev2.12154
Lee, W. S., Kim, H. J., Kim, K. I., Kim, G. B. & Jin, W. Intra-articular injection of autologous adipose tissue-derived mesenchymal stem cells for the treatment of knee osteoarthritis: a phase IIb, randomized, placebo-controlled clinical trial. Stem Cells Transl. Med. 8, 504–511 (2019).
pubmed: 30835956 pmcid: 6525553 doi: 10.1002/sctm.18-0122
Chen, C. F. et al. Treatment of knee osteoarthritis with intra-articular injection of allogeneic adipose-derived stem cells (ADSCs) ELIXCYTE
pubmed: 34717765 pmcid: 8557559 doi: 10.1186/s13287-021-02631-z
Krampera, M. & Le Blanc, K. Mesenchymal stromal cells: putative microenvironmental modulators become cell therapy. Cell Stem Cell 28, 1708–1725 (2021).
pubmed: 34624232 doi: 10.1016/j.stem.2021.09.006

Auteurs

Guiwen Ye (G)

Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China.

Jinteng Li (J)

Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China.

Wenhui Yu (W)

Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China.

Zhongyu Xie (Z)

Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China.

Guan Zheng (G)

Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China.

Wenjie Liu (W)

Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China.

Shan Wang (S)

Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China.

Qian Cao (Q)

Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China.

Jiajie Lin (J)

Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China.

Zepeng Su (Z)

Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China.

Dateng Li (D)

Department of Statistical Science, Southern Methodist University, Dallas, TX, USA.

Yunshu Che (Y)

Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China.

Shuai Fan (S)

Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China.

Peng Wang (P)

Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China. wangp57@mail.sysu.edu.cn.

Yanfeng Wu (Y)

Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China. wuyf@mail.sysu.edu.cn.

Huiyong Shen (H)

Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China. shenhuiy@mail.sysu.edu.cn.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH