ALKBH5 facilitates CYP1B1 mRNA degradation via m6A demethylation to alleviate MSC senescence and osteoarthritis progression.
Journal
Experimental & molecular medicine
ISSN: 2092-6413
Titre abrégé: Exp Mol Med
Pays: United States
ID NLM: 9607880
Informations de publication
Date de publication:
08 2023
08 2023
Historique:
received:
24
09
2022
accepted:
24
05
2023
revised:
01
04
2023
medline:
4
9
2023
pubmed:
1
8
2023
entrez:
31
7
2023
Statut:
ppublish
Résumé
Improving health and delaying aging is the focus of medical research. Previous studies have shown that mesenchymal stem cell (MSC) senescence is closely related to organic aging and the development of aging-related diseases such as osteoarthritis (OA). m6A is a common RNA modification that plays an important role in regulating cell biological functions, and ALKBH5 is one of the key m6A demethylases. However, the role of m6A and ALKBH5 in MSC senescence is still unclear. Here, we found that the m6A level was enhanced and ALKBH5 expression was decreased in aging MSCs induced by multiple replications, H
Identifiants
pubmed: 37524872
doi: 10.1038/s12276-023-01059-0
pii: 10.1038/s12276-023-01059-0
pmc: PMC10474288
doi:
Substances chimiques
Hydrogen Peroxide
BBX060AN9V
RNA, Messenger
0
AlkB Homolog 5, RNA Demethylase
EC 1.14.11.-
6-methyladenine
W7IBY2BGAX
Cytochrome P-450 CYP1B1
EC 1.14.14.1
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1743-1756Informations de copyright
© 2023. The Author(s).
Références
He, S. & Sharpless, N. E. Senescence in health and disease. Cell 169, 1000–1011 (2017).
pubmed: 28575665
pmcid: 5643029
doi: 10.1016/j.cell.2017.05.015
Muñoz-Espín, D. & Serrano, M. Cellular senescence: from physiology to pathology. Nat. Rev. Mol. Cell Biol. 15, 482–96 (2014).
pubmed: 24954210
doi: 10.1038/nrm3823
Hernandez-Segura, A., Nehme, J. & Demaria, M. Hallmarks of cellular senescence. Trends Cell Biol 28, 436–453 (2018).
pubmed: 29477613
doi: 10.1016/j.tcb.2018.02.001
Wang, W. et al. A genome-wide CRISPR-based screen identifies KAT7 as a driver of cellular senescence. Sci. Transl. Med. 13, eabd2655 (2021).
pubmed: 33408182
doi: 10.1126/scitranslmed.abd2655
Ding, D. C., Shyu, W. C. & Lin, S. Z. Mesenchymal stem cells. Cell Transplant 20, 5–14 (2011).
pubmed: 21396235
doi: 10.3727/096368910X
Soliman, H. et al. Multipotent stromal cells: one name, multiple identities. Cell Stem Cell 28, 1690–1707 (2021).
pubmed: 34624231
doi: 10.1016/j.stem.2021.09.001
Li, Y. et al. Senescence of mesenchymal stem cells (Review). Int. J. Mol. Med. 39, 775–782 (2017).
pubmed: 28290609
doi: 10.3892/ijmm.2017.2912
Malaise, O. et al. Mesenchymal stem cell senescence alleviates their intrinsic and seno-suppressive paracrine properties contributing to osteoarthritis development. Aging 11, 9128–9146 (2019).
pubmed: 31644429
pmcid: 6834426
doi: 10.18632/aging.102379
Deng, P. et al. Loss of KDM4B exacerbates bone-fat imbalance and mesenchymal stromal cell exhaustion in skeletal aging. Cell Stem Cell 28, 1057–1073 (2021).
pubmed: 33571444
pmcid: 8178178
doi: 10.1016/j.stem.2021.01.010
Huang, H., Weng, H. & Chen, J. The biogenesis and precise control of RNA m
pubmed: 31810533
doi: 10.1016/j.tig.2019.10.011
Meyer, K. D. & Jaffrey, S. R. Rethinking m
pubmed: 28759256
pmcid: 5963928
doi: 10.1146/annurev-cellbio-100616-060758
Shafik, A. M. et al. N6-methyladenosine dynamics in neurodevelopment and aging, and its potential role in Alzheimer’s disease. Genome Biol. 22, 17 (2021).
pubmed: 33402207
pmcid: 7786910
doi: 10.1186/s13059-020-02249-z
Wang, J. et al. The biological function of m
pubmed: 32742194
pmcid: 7388453
doi: 10.1186/s12935-020-01450-1
Yu, F. et al. Post-translational modification of RNA m
pubmed: 34048572
pmcid: 8191756
doi: 10.1093/nar/gkab415
Murray, G. I., Melvin, W. T., Greenlee, W. F. & Burke, M. D. Regulation, function, and tissue-specific expression of cytochrome P450 CYP1B1. Annu. Rev. Pharmacol. Toxicol. 41, 297–316 (2001).
pubmed: 11264459
doi: 10.1146/annurev.pharmtox.41.1.297
Dragin, N. et al. Phenotype of the Cyp1a1/1a2/1b1-/- triple-knockout mouse. Mol. Pharmacol. 73, 1844–1856 (2008).
pubmed: 18372398
doi: 10.1124/mol.108.045658
Lu, Y. et al. Procaspase-1 patrolled to the nucleus of proatherogenic lipid LPC-activated human aortic endothelial cells induces ROS promoter CYP1B1 and strong inflammation. Redox Biol. 47, 102142 (2021).
pubmed: 34598017
pmcid: 8487079
doi: 10.1016/j.redox.2021.102142
Ye, G. et al. Oxidative stress-mediated mitochondrial dysfunction facilitates mesenchymal stem cell senescence in ankylosing spondylitis. Cell Death Dis. 11, 775 (2020).
pubmed: 32943613
pmcid: 7498590
doi: 10.1038/s41419-020-02993-x
Dominici, M. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 8, 315–317 (2006).
pubmed: 16923606
doi: 10.1080/14653240600855905
Li, Z. et al. The N
pubmed: 34088896
pmcid: 8178363
doi: 10.1038/s41419-021-03869-4
Glasson, S. S., Chambers, M. G., Van Den Berg, W. B. & Little, C. B. The OARSI histopathology initiative - Recommendations for histological assessments of osteoarthritis in the mouse. Osteoarthr. Cartil. 18, S17–S23 (2010).
doi: 10.1016/j.joca.2010.05.025
D’Adda Di Fagagna, F. et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 426, 194–198 (2003).
pubmed: 14608368
doi: 10.1038/nature02118
Li, F., Zhu, W. & Gonzalez, F. J. Potential role of CYP1B1 in the development and treatment of metabolic diseases. Pharmacol. Ther. 178, 18–30 (2017).
pubmed: 28322972
pmcid: 5600638
doi: 10.1016/j.pharmthera.2017.03.007
Tang, Y. et al. m6A-Atlas: a comprehensive knowledgebase for unraveling the N6-methyladenosine (m
pubmed: 32821938
doi: 10.1093/nar/gkaa692
Zheng, Y. et al. m6AVar: a database of functional variants involved in m
pubmed: 29036329
doi: 10.1093/nar/gkx895
Zhou, Y., Zeng, P., Li, Y. H., Zhang, Z. & Cui, Q. SRAMP: prediction of mammalian N
pubmed: 26896799
pmcid: 4889921
doi: 10.1093/nar/gkw104
Huang, H. et al. Recognition of RNA N
pubmed: 29476152
pmcid: 5826585
doi: 10.1038/s41556-018-0045-z
Deng, L. et al. Stabilizing heterochromatin by DGCR8 alleviates senescence and osteoarthritis. Nat. Commun. 10, 3329 (2019).
pubmed: 31350386
pmcid: 6659673
doi: 10.1038/s41467-019-10831-8
Zhen, G. et al. Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat. Med. 19, 704–712 (2013).
pubmed: 23685840
pmcid: 3676689
doi: 10.1038/nm.3143
Xiao, Y. Z. et al. Reducing hypothalamic stem cell senescence protects against aging-associated physiological decline. Cell Metab. 31, 534–548.e5 (2020).
pubmed: 32004475
doi: 10.1016/j.cmet.2020.01.002
Zhang, H. et al. NAD
pubmed: 27127236
doi: 10.1126/science.aaf2693
Bertero, A. et al. The SMAD2/3 interactome reveals that TGFβ controls m
pubmed: 29489750
pmcid: 5951268
doi: 10.1038/nature25784
Wu, Y. et al. Mettl3-mediated m
pubmed: 30429466
pmcid: 6235890
doi: 10.1038/s41467-018-06898-4
Wu, Z. et al. METTL3 counteracts premature aging via m
pubmed: 33035345
pmcid: 7641765
doi: 10.1093/nar/gkaa816
Zhang, Y. et al. METTL3 alleviates D-gal-induced renal tubular epithelial cellular senescence via promoting miR-181a maturation. Mech Ageing Dev. 210, 111774 (2023).
pubmed: 36608773
doi: 10.1016/j.mad.2022.111774
Arcidiacono, O. A., Krejčí, J. & Bártová, E. The distinct function and localization of METTL3/METTL14 and METTL16 enzymes in cardiomyocytes. Int. J. Mol. Sci. 21, 8139 (2020).
pubmed: 33143367
pmcid: 7663386
doi: 10.3390/ijms21218139
Yang, Y., Hsu, P. J., Chen, Y. S. & Yang, Y. G. Dynamic transcriptomic m
pubmed: 29789545
pmcid: 5993786
doi: 10.1038/s41422-018-0040-8
Ramanan, V. K. et al. Variants in PPP2R2B and IGF2BP3 are associated with higher tau deposition. Brain Commun. 2, fcaa159 (2020).
pubmed: 33426524
pmcid: 7780444
doi: 10.1093/braincomms/fcaa159
Sarparast, M., Dattmore, D., Alan, J. & Lee, K. S. S. Cytochrome P450 metabolism of polyunsaturated fatty acids and neurodegeneration. Nutrients 12, 3523 (2020).
pubmed: 33207662
pmcid: 7696575
doi: 10.3390/nu12113523
Yang, Y. et al. Endothelium-specific CYP2J2 overexpression attenuates age-related insulin resistance. Aging Cell 17, e12718 (2018).
pubmed: 29318723
pmcid: 5847864
doi: 10.1111/acel.12718
Bansal, S. et al. Mitochondrial targeting of cytochrome P450 (CYP) 1B1 and its role in polycyclic aromatic hydrocarbon-induced mitochondrial dysfunction. J. Biol. Chem. 289, 9936–9951 (2014).
pubmed: 24497629
pmcid: 3975038
doi: 10.1074/jbc.M113.525659
Letts, J. A. & Sazanov, L. A. Clarifying the supercomplex: the higher-order organization of the mitochondrial electron transport chain. Nat. Struct. Mol. Biol. 24, 800–808 (2017).
pubmed: 28981073
doi: 10.1038/nsmb.3460
Zhang, L. et al. Structural insight into the electron transfer pathway of a self-sufficient P450 monooxygenase. Nat. Commun. 11, 2676 (2020).
pubmed: 32472090
pmcid: 7260179
doi: 10.1038/s41467-020-16500-5
Yoshigae, Y., Kent, U. M. & Hollenberg, P. F. Role of the highly conserved threonine in cytochrome P450 2E1: prevention of H
pubmed: 23750736
doi: 10.1021/bi4004843
Sanchez-Lopez, E., Coras, R., Torres, A., Lane, N. E. & Guma, M. Synovial inflammation in osteoarthritis progression. Nat. Rev. Rheumatol. 18, 258–275 (2022).
pubmed: 35165404
pmcid: 9050956
doi: 10.1038/s41584-022-00749-9
Byun, H. O., Lee, Y. K., Kim, J. M. & Yoon, G. From cell senescence to age-related diseases: differential mechanisms of action of senescence-associated secretory phenotypes. BMB Rep. 48, 549–558 (2015).
pubmed: 26129674
pmcid: 4911181
doi: 10.5483/BMBRep.2015.48.10.122
Yin, Y., Chen, H., Wang, Y., Zhang, L. & Wang, X. Roles of extracellular vesicles in the aging microenvironment and age-related diseases. J. Extracell. Vesicles 10, e12154 (2021).
pubmed: 34609061
pmcid: 8491204
doi: 10.1002/jev2.12154
Lee, W. S., Kim, H. J., Kim, K. I., Kim, G. B. & Jin, W. Intra-articular injection of autologous adipose tissue-derived mesenchymal stem cells for the treatment of knee osteoarthritis: a phase IIb, randomized, placebo-controlled clinical trial. Stem Cells Transl. Med. 8, 504–511 (2019).
pubmed: 30835956
pmcid: 6525553
doi: 10.1002/sctm.18-0122
Chen, C. F. et al. Treatment of knee osteoarthritis with intra-articular injection of allogeneic adipose-derived stem cells (ADSCs) ELIXCYTE
pubmed: 34717765
pmcid: 8557559
doi: 10.1186/s13287-021-02631-z
Krampera, M. & Le Blanc, K. Mesenchymal stromal cells: putative microenvironmental modulators become cell therapy. Cell Stem Cell 28, 1708–1725 (2021).
pubmed: 34624232
doi: 10.1016/j.stem.2021.09.006