Phosphoinositides and intracellular calcium signaling: novel insights into phosphoinositides and calcium coupling as negative regulators of cellular signaling.
Journal
Experimental & molecular medicine
ISSN: 2092-6413
Titre abrégé: Exp Mol Med
Pays: United States
ID NLM: 9607880
Informations de publication
Date de publication:
08 2023
08 2023
Historique:
received:
13
02
2023
accepted:
07
06
2023
revised:
05
06
2023
medline:
4
9
2023
pubmed:
1
8
2023
entrez:
31
7
2023
Statut:
ppublish
Résumé
Intracellular calcium (Ca
Identifiants
pubmed: 37524877
doi: 10.1038/s12276-023-01067-0
pii: 10.1038/s12276-023-01067-0
pmc: PMC10474053
doi:
Substances chimiques
Phosphatidylinositols
0
Calcium
SY7Q814VUP
Types de publication
Journal Article
Review
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1702-1712Informations de copyright
© 2023. The Author(s).
Références
Lemmon, M. A. Membrane recognition by phospholipid-binding domains. Nat. Rev. Mol. Cell Biol. 9, 99–111 (2008).
pubmed: 18216767
doi: 10.1038/nrm2328
Di Paolo, G. & De Camilli, P. Phosphoinositides in cell regulation and membrane dynamics. Nature 443, 651–657 (2006).
pubmed: 17035995
doi: 10.1038/nature05185
Cantley, L. C. The phosphoinositide 3-kinase pathway. Science 296, 1655–1657 (2002).
pubmed: 12040186
doi: 10.1126/science.296.5573.1655
Bilanges, B., Posor, Y. & Vanhaesebroeck, B. PI3K isoforms in cell signalling and vesicle trafficking. Nat. Rev. Mol. Cell Biol. 20, 515–534 (2019).
pubmed: 31110302
doi: 10.1038/s41580-019-0129-z
Leslie, N. R., Biondi, R. M. & Alessi, D. R. Phosphoinositide-regulated kinases and phosphoinositide phosphatases. Chem. Rev. 101, 2365–2380 (2001).
pubmed: 11749378
doi: 10.1021/cr000091i
Clément, S. et al. The lipid phosphatase SHIP2 controls insulin sensitivity. Nature 409, 92–97 (2001).
pubmed: 11343120
doi: 10.1038/35051094
Krystal, G. Lipid phosphatases in the immune system. Semin. Immunol. 12, 397–403 (2000).
pubmed: 10995586
doi: 10.1006/smim.2000.0222
MacLennan, D. H. & Kranias, E. G. Phospholamban: a crucial regulator of cardiac contractility. Nat. Rev. Mol. Cell Biol. 4, 566–577 (2003).
pubmed: 12838339
doi: 10.1038/nrm1151
Balla, T. Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol. Rev. 93, 1019–1137 (2013).
pubmed: 23899561
pmcid: 3962547
doi: 10.1152/physrev.00028.2012
Saxena, A. et al. Phosphoinositide binding by the pleckstrin homology domains of Ipl and Tih1*. J. Biol. Chem. 277, 49935–49944 (2002).
pubmed: 12374806
doi: 10.1074/jbc.M206497200
Fukuda, M., Kojima, T., Kabayama, H. & Mikoshiba, K. Mutation of the pleckstrin homology domain of Bruton’s tyrosine kinase in immunodeficiency impaired inositol 1,3,4,5-tetrakisphosphate binding capacity. J. Biol. Chem. 271, 30303–30306 (1996).
pubmed: 8939985
doi: 10.1074/jbc.271.48.30303
Salim, K. et al. Distinct specificity in the recognition of phosphoinositides by the pleckstrin homology domains of dynamin and Bruton’s tyrosine kinase. EMBO J. 15, 6241–6250 (1996).
pubmed: 8947047
pmcid: 452447
doi: 10.1002/j.1460-2075.1996.tb01014.x
Hirve, N. et al. A conserved motif in the ITK PH-domain is required for phosphoinositide binding and TCR signaling but dispensable for adaptor protein interactions. PLoS ONE 7, e45158 (2012).
pubmed: 23028816
pmcid: 3445557
doi: 10.1371/journal.pone.0045158
Klarlund, J. K. et al. Signaling by phosphoinositide-3,4,5-trisphosphate through proteins containing pleckstrin and Sec7 homology domains. Science 275, 1927–1930 (1997).
pubmed: 9072969
doi: 10.1126/science.275.5308.1927
Li, T. et al. Activation of Bruton’s tyrosine kinase (BTK) by a point mutation in its pleckstrin homology (PH) domain. Immunity 2, 451–460 (1995).
pubmed: 7538439
doi: 10.1016/1074-7613(95)90026-8
Carpten, J. D. et al. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 448, 439–444 (2007).
pubmed: 17611497
doi: 10.1038/nature05933
Islam, M. S. (ed.) Calcium Signaling, 1–6 (Springer, 2020).
Arruda, Ana, P., Hotamisligil & Gökhan, S. Calcium homeostasis and organelle function in the pathogenesis of obesity and diabetes. Cell Metab. 22, 381–397 (2015).
pubmed: 26190652
pmcid: 4558313
doi: 10.1016/j.cmet.2015.06.010
Clapham, D. E. Calcium signaling. Cell 131, 1047–1058 (2007).
pubmed: 18083096
doi: 10.1016/j.cell.2007.11.028
Guerrero-Hernandez, A. & Verkhratsky, A. Calcium signalling in diabetes. Cell Calcium 56, 297–301 (2014).
pubmed: 25217232
doi: 10.1016/j.ceca.2014.08.009
Trebak, M. & Kinet, J.-P. Calcium signalling in T cells. Nat. Rev. Immunol. 19, 154–169 (2019).
pubmed: 30622345
pmcid: 6788797
doi: 10.1038/s41577-018-0110-7
Egnatchik, R. A., Leamy, A. K., Jacobson, D. A., Shiota, M. & Young, J. D. ER calcium release promotes mitochondrial dysfunction and hepatic cell lipotoxicity in response to palmitate overload. Mol. Metab. 3, 544–553 (2014).
pubmed: 25061559
pmcid: 4099508
doi: 10.1016/j.molmet.2014.05.004
Fu, S., Watkins, Steven, M., Hotamisligil & Gökhan, S. The role of endoplasmic reticulum in hepatic lipid homeostasis and stress signaling. Cell Metab. 15, 623–634 (2012).
pubmed: 22560215
doi: 10.1016/j.cmet.2012.03.007
Fu, S. et al. Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature 473, 528–531 (2011).
pubmed: 21532591
pmcid: 3102791
doi: 10.1038/nature09968
Arruda, A. P. et al. Chronic enrichment of hepatic endoplasmic reticulum-mitochondria contact leads to mitochondrial dysfunction in obesity. Nat. Med. 20, 1427–1435 (2014).
pubmed: 25419710
pmcid: 4412031
doi: 10.1038/nm.3735
Ozcan, L. et al. Calcium signaling through CaMKII regulates hepatic glucose production in fasting and obesity. Cell Metab. 15, 739–751 (2012).
pubmed: 22503562
pmcid: 3348356
doi: 10.1016/j.cmet.2012.03.002
Ly, L. D. et al. Oxidative stress and calcium dysregulation by palmitate in type 2 diabetes. Exp. Mol. Med. 49, e291 (2017).
pubmed: 28154371
pmcid: 5336562
doi: 10.1038/emm.2016.157
Bonnard, C. et al. Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. J. Clin. Invest. 118, 789–800 (2008).
pubmed: 18188455
pmcid: 2176186
Kang, J. K. et al. Increased intracellular Ca
pubmed: 29078297
pmcid: 5692539
doi: 10.1073/pnas.1706489114
Chen, K.-E., Tillu, V. A., Chandra, M. & Collins, B. M. Molecular basis for membrane recruitment by the PX and C2 domains of class II phosphoinositide 3-kinase-C2α. Structure 26, 1612–1625.e1614 (2018).
pubmed: 30293811
doi: 10.1016/j.str.2018.08.010
Milburn, C. C. et al. Binding of phosphatidylinositol 3,4,5-trisphosphate to the pleckstrin homology domain of protein kinase B induces a conformational change. Biochem. J. 375, 531–538 (2003).
pubmed: 12964941
pmcid: 1223737
doi: 10.1042/bj20031229
Franke, T. F., Kaplan, D. R., Cantley, L. C. & Toker, A. Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science 275, 665–668 (1997).
pubmed: 9005852
doi: 10.1126/science.275.5300.665
Yu, J. W. et al. Genome-wide analysis of membrane targeting by S. cerevisiae pleckstrin homology domains. Mol. Cell 13, 677–688 (2004).
pubmed: 15023338
doi: 10.1016/S1097-2765(04)00083-8
Vonkova, I. et al. Lipid cooperativity as a general membrane-recruitment principle for PH domains. Cell Rep. 12, 1519–1530 (2015).
pubmed: 26299969
doi: 10.1016/j.celrep.2015.07.054
Ferguson, K. M., Lemmon, M. A., Schlessinger, J. & Sigler, P. B. Structure of the high affinity complex of inositol trisphosphate with a phospholipase C pleckstrin homology domain. Cell 83, 1037–1046 (1995).
pubmed: 8521504
doi: 10.1016/0092-8674(95)90219-8
Le Huray, K. I. P., Wang, H., Sobott, F. & Kalli, A. C. Systematic simulation of the interactions of pleckstrin homology domains with membranes. Sci. Adv. 8, eabn6992 (2022).
pubmed: 35857458
pmcid: 9258823
doi: 10.1126/sciadv.abn6992
Singh, N. et al. Redefining the specificity of phosphoinositide-binding by human PH domain-containing proteins. Nat. Commun. 12, 4339 (2021).
pubmed: 34267198
pmcid: 8282632
doi: 10.1038/s41467-021-24639-y
Lemmon, M. A. Pleckstrin homology (PH) domains and phosphoinositides. Biochem. Soc. Symp. 74, 81–93, (2007).
Jennifer, M. K. et al. Specificity and promiscuity in phosphoinositide binding by pleckstrin homology domains*. J. Biol. Chem. 273, 30497–30508 (1998).
doi: 10.1074/jbc.273.46.30497
Lemmon, M. A., Ferguson, K. M., O’Brien, R., Sigler, P. B. & Schlessinger, J. Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain. Proc. Natl Acad. Sci. USA 92, 10472–10476 (1995).
pubmed: 7479822
pmcid: 40633
doi: 10.1073/pnas.92.23.10472
Lindvall, J. M. et al. Bruton’s tyrosine kinase: cell biology, sequence conservation, mutation spectrum, siRNA modifications, and expression profiling. Immunol. Rev. 203, 200–215 (2005).
pubmed: 15661031
doi: 10.1111/j.0105-2896.2005.00225.x
Taniguchi, C. M., Emanuelli, B. & Kahn, C. R. Critical nodes in signalling pathways: insights into insulin action. Nat. Rev. Mol. Cell Biol. 7, 85–96 (2006).
pubmed: 16493415
doi: 10.1038/nrm1837
Shepherd, P. R., Withers, D. J. & Siddle, K. Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling. Biochem. J. 333, 471–490 (1998).
pubmed: 9677303
pmcid: 1219607
doi: 10.1042/bj3330471
Yoon, M.-S. & Choi, C. S. The role of amino acid-induced mammalian target of rapamycin complex 1(mTORC1) signaling in insulin resistance. Exp. Mol. Med. 48, e201–e201 (2016).
pubmed: 27534530
pmcid: 4686696
doi: 10.1038/emm.2015.93
Parker, P. J., Caudwell, F. B. & Cohen, P. Glycogen synthase from rabbit skeletal muscle; effect of insulin on the state of phosphorylation of the seven phosphoserine residues in vivo. Eur. J. Biochem. 130, 227–234 (1983).
pubmed: 6402364
doi: 10.1111/j.1432-1033.1983.tb07140.x
Manning, B. D. & Toker, A. AKT/PKB signaling: navigating the network. Cell 169, 381–405 (2017).
pubmed: 28431241
pmcid: 5546324
doi: 10.1016/j.cell.2017.04.001
Datta, S. R. et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231–241 (1997).
pubmed: 9346240
doi: 10.1016/S0092-8674(00)80405-5
Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor. Cell 96, 857–868 (1999).
pubmed: 10102273
doi: 10.1016/S0092-8674(00)80595-4
Porstmann, T. et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab. 8, 224–236 (2008).
pubmed: 18762023
pmcid: 2593919
doi: 10.1016/j.cmet.2008.07.007
Yang, L. et al. The mTORC1 effectors S6K1 and 4E-BP play different roles in CNS axon regeneration. Nat. Commun. 5, 5416 (2014).
pubmed: 25382660
doi: 10.1038/ncomms6416
Kurlawalla-Martinez, C. et al. Insulin hypersensitivity and resistance to streptozotocin-induced diabetes in mice lacking PTEN in adipose tissue. Mol. Cell. Biol. 25, 2498–2510 (2005).
pubmed: 15743841
pmcid: 1061603
doi: 10.1128/MCB.25.6.2498-2510.2005
Butler, M. et al. Specific inhibition of PTEN expression reverses hyperglycemia in diabetic mice. Diabetes 51, 1028–1034 (2002).
pubmed: 11916922
doi: 10.2337/diabetes.51.4.1028
Yang, X. et al. Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature 451, 964–969 (2008).
pubmed: 18288188
doi: 10.1038/nature06668
Ande, S. R. & Mishra, S. Prohibitin interacts with phosphatidylinositol 3,4,5-triphosphate (PIP3) and modulates insulin signaling. Biochem. Biophys. Res. Commun. 390, 1023–1028 (2009).
pubmed: 19854158
doi: 10.1016/j.bbrc.2009.10.101
Ande, S. R., Moulik, S. & Mishra, S. Interaction between O-GlcNAc modification and tyrosine phosphorylation of prohibitin: implication for a novel binary switch. PLoS ONE 4, e4586 (2009).
pubmed: 19238206
pmcid: 2642629
doi: 10.1371/journal.pone.0004586
Whelan, S. A., Lane, M. D. & Hart, G. W. Regulation of the O-linked β-N-acetylglucosamine transferase by insulin signaling. J. Biol. Chem. 283, 21411–21417 (2008).
pubmed: 18519567
pmcid: 2490780
doi: 10.1074/jbc.M800677200
Han, E. K. H., McGonigal, T., Butler, C., Giranda, V. L. & Luo, Y. Characterization of Akt overexpression in MiaPaCa-2 cells: prohibitin is an Akt substrate both in vitro and in cells. Anticancer Res. 28, 957–963 (2008).
pubmed: 18507042
Brazil, D. P., Yang, Z. Z. & Hemmings, B. A. Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem. Sci. 29, 233–242 (2004).
pubmed: 15130559
doi: 10.1016/j.tibs.2004.03.006
Gao, T., Furnari, F. & Newton, A. C. PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol. Cell 18, 13–24 (2005).
pubmed: 15808505
doi: 10.1016/j.molcel.2005.03.008
Cahalan, M. D. & Chandy, K. G. The functional network of ion channels in T lymphocytes. Immunol. Rev. 231, 59–87 (2009).
pubmed: 19754890
pmcid: 3133616
doi: 10.1111/j.1600-065X.2009.00816.x
Calì, T., Brini, M. & Carafoli, E. Regulation of cell calcium and role of plasma membrane calcium ATPases. Int. Rev. Cell Mol. Biol. 332, 259–296 (2017).
Stafford, N., Wilson, C., Oceandy, D., Neyses, L. & Cartwright, E. J. The plasma membrane calcium ATPases and their role as major new players in human disease. Physiol. Rev. 97, 1089–1125 (2017).
pubmed: 28566538
doi: 10.1152/physrev.00028.2016
Chemaly, E. R., Troncone, L. & Lebeche, D. SERCA control of cell death and survival. Cell Calcium 69, 46–61 (2018).
pubmed: 28747251
doi: 10.1016/j.ceca.2017.07.001
Brandman, O., Liou, J., Park, W. S. & Meyer, T. STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca
pubmed: 18160041
pmcid: 2680164
doi: 10.1016/j.cell.2007.11.039
Carrasco, S. & Meyer, T. STIM proteins and the endoplasmic reticulum-plasma membrane junctions. Annu. Rev. Biochem. 80, 973–1000 (2011).
pubmed: 21548779
pmcid: 3897197
doi: 10.1146/annurev-biochem-061609-165311
Bugrim, A. E. Regulation of Ca
pubmed: 10378083
doi: 10.1054/ceca.1999.0027
Mikoshiba, K. IP3 receptor/Ca
pubmed: 17697045
doi: 10.1111/j.1471-4159.2007.04825.x
Foskett, J. K., White, C., Cheung, K.-H. & Mak, D.-O. D. Inositol trisphosphate receptor Ca
pubmed: 17429043
doi: 10.1152/physrev.00035.2006
Zhang, M., Tanaka, T. & Ikura, M. Calcium-induced conformational transition revealed by the solution structure of apo calmodulin. Nat. Struct. Biol. 2, 758–767 (1995).
pubmed: 7552747
doi: 10.1038/nsb0995-758
Choi, M. S. K., Brines, R. D., Holman, M. J. & Klaus, G. G. B. Induction of NF-AT in normal B lymphocytes by anti-immunoglobulin or CD40 ligand in conjunction with IL-4. Immunity 1, 179–187 (1994).
pubmed: 7889406
doi: 10.1016/1074-7613(94)90096-5
Khan, M. T., Wagner, L., Yule, D. I., Bhanumathy, C. & Joseph, S. K. Akt kinase phosphorylation of inositol 1,4,5-trisphosphate receptors. J. Biol. Chem. 281, 3731–3737 (2006).
pubmed: 16332683
doi: 10.1074/jbc.M509262200
Marchi, S. et al. Selective modulation of subtype III IP3R by Akt regulates ER Ca2+ release and apoptosis. Cell Death Dis. 3, e304–e304 (2012).
pubmed: 22552281
pmcid: 3366079
doi: 10.1038/cddis.2012.45
Wang, Y. et al. Inositol-1,4,5-trisphosphate receptor regulates hepatic gluconeogenesis in fasting and diabetes. Nature 485, 128–132 (2012).
pubmed: 22495310
pmcid: 3343222
doi: 10.1038/nature10988
Catalucci, D. et al. Akt increases sarcoplasmic reticulum Ca
pubmed: 19696029
pmcid: 2788869
doi: 10.1074/jbc.M109.036566
Bruce, J. I. E. Metabolic regulation of the PMCA: role in cell death and survival. Cell Calcium 69, 28–36 (2018).
pubmed: 28625348
pmcid: 5761718
doi: 10.1016/j.ceca.2017.06.001
Carafoli, E. Biogenesis: plasma membrane calcium ATPase: 15 years of work on the purified enzyme1. FASEB J. 8, 993–1002 (1994).
pubmed: 7926378
doi: 10.1096/fasebj.8.13.7926378
Kobayashi, Y. et al. Mice lacking hypertension candidate gene ATP2B1 in vascular smooth muscle cells show significant blood pressure elevation. Hypertension 59, 854–860 (2012).
pubmed: 22311909
doi: 10.1161/HYPERTENSIONAHA.110.165068
Fraze, E. et al. Ambient plasma free fatty acid concentrations in noninsulin-dependent diabetes mellitus: evidence for insulin resistance. J. Clin. Endocrinol. Metab. 61, 807–811 (1985).
pubmed: 3900120
doi: 10.1210/jcem-61-5-807
Denisenko, Y. K. et al. Lipid-induced mechanisms of metabolic syndrome. J. Obes. 2020, 5762395 (2020).
pubmed: 32963827
pmcid: 7491450
doi: 10.1155/2020/5762395
Feng, R. et al. Free fatty acids profile among lean, overweight and obese non-alcoholic fatty liver disease patients: a case–control study. Lipids Health Dis. 16, 165 (2017).
pubmed: 28870233
pmcid: 5584533
doi: 10.1186/s12944-017-0551-1
Carlsson, C., Borg, L. A. & Welsh, N. Sodium palmitate induces partial mitochondrial uncoupling and reactive oxygen species in rat pancreatic islets in vitro. Endocrinology 140, 3422–3428 (1999).
pubmed: 10433196
doi: 10.1210/endo.140.8.6908
Yamagishi, S. et al. Palmitate-induced apoptosis of microvascular endothelial cells and pericytes. Mol. Med. 8, 179–184 (2002).
pubmed: 12149567
pmcid: 2039986
doi: 10.1007/BF03402010
Gao, D. et al. The effects of palmitate on hepatic insulin resistance are mediated by NADPH oxidase 3-derived reactive oxygen species through JNK and p38MAPK pathways. J. Biol. Chem. 285, 29965–29973 (2010).
pubmed: 20647313
pmcid: 2943261
doi: 10.1074/jbc.M110.128694
Lambertucci, R. H. et al. Palmitate increases superoxide production through mitochondrial electron transport chain and NADPH oxidase activity in skeletal muscle cells. J. Cell. Physiol. 216, 796–804 (2008).
pubmed: 18446788
doi: 10.1002/jcp.21463
Lee, M. Y. et al. Peroxisome proliferator-activated receptor δ agonist attenuates hepatic steatosis by anti-inflammatory mechanism. Exp. Mol. Med. 44, 578–585 (2012).
pubmed: 22824914
pmcid: 3490079
doi: 10.3858/emm.2012.44.10.066
Park, H.-W. & Lee, J. H. Calcium channel blockers as potential therapeutics for obesity-associated autophagy defects and fatty liver pathologies. Autophagy 10, 2385–2386 (2014).
pubmed: 25484079
doi: 10.4161/15548627.2014.984268
Park, H.-W. et al. Pharmacological correction of obesity-induced autophagy arrest using calcium channel blockers. Nat. Commun. 5, 4834 (2014).
pubmed: 25189398
doi: 10.1038/ncomms5834
Rawnsley, D. R. & Diwan, A. Lysosome impairment as a trigger for inflammation in obesity: the proof is in the fat. EBioMedicine 56, 102824 (2020).
pubmed: 32540774
pmcid: 7300142
doi: 10.1016/j.ebiom.2020.102824
Cao, M., Luo, X., Wu, K. & He, X. Targeting lysosomes in human disease: from basic research to clinical applications. Signal Transduct. Target. Ther. 6, 379 (2021).
pubmed: 34744168
pmcid: 8572923
doi: 10.1038/s41392-021-00778-y
Lloyd-Evans, E. & Waller-Evans, H. Lysosomal Ca
Zhang, X., Li, X. & Xu, H. Phosphoinositide isoforms determine compartment-specific ion channel activity. Proc. Natl Acad. Sci. USA 109, 11384–11389 (2012).
pubmed: 22733759
pmcid: 3396495
doi: 10.1073/pnas.1202194109
Draznin, B. et al. Mechanism of insulin resistance induced by sustained levels of cytosolic free calcium in rat adipocytes. Endocrinology 125, 2341–2349 (1989).
pubmed: 2551647
doi: 10.1210/endo-125-5-2341
Draznin, B. et al. Possible role of cytosolic free calcium concentrations in mediating insulin resistance of obesity and hyperinsulinemia. J. Clin. Invest. 82, 1848–1852 (1988).
pubmed: 3143744
pmcid: 442763
doi: 10.1172/JCI113801
Fu, Z., Fan, Q., Zhou, Y., Zhao, Y. & He, Z. Elimination of intracellular calcium overload by BAPTA-AM-loaded liposomes: a promising therapeutic agent for acute liver failure. ACS Appl. Mater. Interfaces 11, 39574–39585 (2019).
pubmed: 31589019
doi: 10.1021/acsami.9b13690
Ovalle, F. et al. Verapamil and beta cell function in adults with recent-onset type 1 diabetes. Nat. Med. 24, 1108–1112 (2018).
pubmed: 29988125
pmcid: 6092963
doi: 10.1038/s41591-018-0089-4
He, Z. et al. BAPTA-AM nanoparticle for the curing of acute kidney injury induced by ischemia/reperfusion. J. Biomed. Nanotechnol. 14, 868–883 (2018).
pubmed: 29883558
doi: 10.1166/jbn.2018.2532
Kim, O.-H. et al. β-propeller phytase hydrolyzes insoluble Ca
pubmed: 20964370
doi: 10.1021/bi1010249
Bilkova, E. et al. Calcium directly regulates phosphatidylinositol 4,5-bisphosphate headgroup conformation and recognition. J. Am. Chem. Soc. 139, 4019–4024 (2017).
pubmed: 28177616
pmcid: 5364432
doi: 10.1021/jacs.6b11760
Lee, J. W. et al. Candesartan, an angiotensin-II receptor blocker, ameliorates insulin resistance and hepatosteatosis by reducing intracellular calcium overload and lipid accumulation. Exp. Mol. Med. 55, 910–925 (2023).
pubmed: 37121975
pmcid: 10238434
doi: 10.1038/s12276-023-00982-6