Phosphoinositides and intracellular calcium signaling: novel insights into phosphoinositides and calcium coupling as negative regulators of cellular signaling.


Journal

Experimental & molecular medicine
ISSN: 2092-6413
Titre abrégé: Exp Mol Med
Pays: United States
ID NLM: 9607880

Informations de publication

Date de publication:
08 2023
Historique:
received: 13 02 2023
accepted: 07 06 2023
revised: 05 06 2023
medline: 4 9 2023
pubmed: 1 8 2023
entrez: 31 7 2023
Statut: ppublish

Résumé

Intracellular calcium (Ca

Identifiants

pubmed: 37524877
doi: 10.1038/s12276-023-01067-0
pii: 10.1038/s12276-023-01067-0
pmc: PMC10474053
doi:

Substances chimiques

Phosphatidylinositols 0
Calcium SY7Q814VUP

Types de publication

Journal Article Review Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1702-1712

Informations de copyright

© 2023. The Author(s).

Références

Lemmon, M. A. Membrane recognition by phospholipid-binding domains. Nat. Rev. Mol. Cell Biol. 9, 99–111 (2008).
pubmed: 18216767 doi: 10.1038/nrm2328
Di Paolo, G. & De Camilli, P. Phosphoinositides in cell regulation and membrane dynamics. Nature 443, 651–657 (2006).
pubmed: 17035995 doi: 10.1038/nature05185
Cantley, L. C. The phosphoinositide 3-kinase pathway. Science 296, 1655–1657 (2002).
pubmed: 12040186 doi: 10.1126/science.296.5573.1655
Bilanges, B., Posor, Y. & Vanhaesebroeck, B. PI3K isoforms in cell signalling and vesicle trafficking. Nat. Rev. Mol. Cell Biol. 20, 515–534 (2019).
pubmed: 31110302 doi: 10.1038/s41580-019-0129-z
Leslie, N. R., Biondi, R. M. & Alessi, D. R. Phosphoinositide-regulated kinases and phosphoinositide phosphatases. Chem. Rev. 101, 2365–2380 (2001).
pubmed: 11749378 doi: 10.1021/cr000091i
Clément, S. et al. The lipid phosphatase SHIP2 controls insulin sensitivity. Nature 409, 92–97 (2001).
pubmed: 11343120 doi: 10.1038/35051094
Krystal, G. Lipid phosphatases in the immune system. Semin. Immunol. 12, 397–403 (2000).
pubmed: 10995586 doi: 10.1006/smim.2000.0222
MacLennan, D. H. & Kranias, E. G. Phospholamban: a crucial regulator of cardiac contractility. Nat. Rev. Mol. Cell Biol. 4, 566–577 (2003).
pubmed: 12838339 doi: 10.1038/nrm1151
Balla, T. Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol. Rev. 93, 1019–1137 (2013).
pubmed: 23899561 pmcid: 3962547 doi: 10.1152/physrev.00028.2012
Saxena, A. et al. Phosphoinositide binding by the pleckstrin homology domains of Ipl and Tih1*. J. Biol. Chem. 277, 49935–49944 (2002).
pubmed: 12374806 doi: 10.1074/jbc.M206497200
Fukuda, M., Kojima, T., Kabayama, H. & Mikoshiba, K. Mutation of the pleckstrin homology domain of Bruton’s tyrosine kinase in immunodeficiency impaired inositol 1,3,4,5-tetrakisphosphate binding capacity. J. Biol. Chem. 271, 30303–30306 (1996).
pubmed: 8939985 doi: 10.1074/jbc.271.48.30303
Salim, K. et al. Distinct specificity in the recognition of phosphoinositides by the pleckstrin homology domains of dynamin and Bruton’s tyrosine kinase. EMBO J. 15, 6241–6250 (1996).
pubmed: 8947047 pmcid: 452447 doi: 10.1002/j.1460-2075.1996.tb01014.x
Hirve, N. et al. A conserved motif in the ITK PH-domain is required for phosphoinositide binding and TCR signaling but dispensable for adaptor protein interactions. PLoS ONE 7, e45158 (2012).
pubmed: 23028816 pmcid: 3445557 doi: 10.1371/journal.pone.0045158
Klarlund, J. K. et al. Signaling by phosphoinositide-3,4,5-trisphosphate through proteins containing pleckstrin and Sec7 homology domains. Science 275, 1927–1930 (1997).
pubmed: 9072969 doi: 10.1126/science.275.5308.1927
Li, T. et al. Activation of Bruton’s tyrosine kinase (BTK) by a point mutation in its pleckstrin homology (PH) domain. Immunity 2, 451–460 (1995).
pubmed: 7538439 doi: 10.1016/1074-7613(95)90026-8
Carpten, J. D. et al. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 448, 439–444 (2007).
pubmed: 17611497 doi: 10.1038/nature05933
Islam, M. S. (ed.) Calcium Signaling, 1–6 (Springer, 2020).
Arruda, Ana, P., Hotamisligil & Gökhan, S. Calcium homeostasis and organelle function in the pathogenesis of obesity and diabetes. Cell Metab. 22, 381–397 (2015).
pubmed: 26190652 pmcid: 4558313 doi: 10.1016/j.cmet.2015.06.010
Clapham, D. E. Calcium signaling. Cell 131, 1047–1058 (2007).
pubmed: 18083096 doi: 10.1016/j.cell.2007.11.028
Guerrero-Hernandez, A. & Verkhratsky, A. Calcium signalling in diabetes. Cell Calcium 56, 297–301 (2014).
pubmed: 25217232 doi: 10.1016/j.ceca.2014.08.009
Trebak, M. & Kinet, J.-P. Calcium signalling in T cells. Nat. Rev. Immunol. 19, 154–169 (2019).
pubmed: 30622345 pmcid: 6788797 doi: 10.1038/s41577-018-0110-7
Egnatchik, R. A., Leamy, A. K., Jacobson, D. A., Shiota, M. & Young, J. D. ER calcium release promotes mitochondrial dysfunction and hepatic cell lipotoxicity in response to palmitate overload. Mol. Metab. 3, 544–553 (2014).
pubmed: 25061559 pmcid: 4099508 doi: 10.1016/j.molmet.2014.05.004
Fu, S., Watkins, Steven, M., Hotamisligil & Gökhan, S. The role of endoplasmic reticulum in hepatic lipid homeostasis and stress signaling. Cell Metab. 15, 623–634 (2012).
pubmed: 22560215 doi: 10.1016/j.cmet.2012.03.007
Fu, S. et al. Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature 473, 528–531 (2011).
pubmed: 21532591 pmcid: 3102791 doi: 10.1038/nature09968
Arruda, A. P. et al. Chronic enrichment of hepatic endoplasmic reticulum-mitochondria contact leads to mitochondrial dysfunction in obesity. Nat. Med. 20, 1427–1435 (2014).
pubmed: 25419710 pmcid: 4412031 doi: 10.1038/nm.3735
Ozcan, L. et al. Calcium signaling through CaMKII regulates hepatic glucose production in fasting and obesity. Cell Metab. 15, 739–751 (2012).
pubmed: 22503562 pmcid: 3348356 doi: 10.1016/j.cmet.2012.03.002
Ly, L. D. et al. Oxidative stress and calcium dysregulation by palmitate in type 2 diabetes. Exp. Mol. Med. 49, e291 (2017).
pubmed: 28154371 pmcid: 5336562 doi: 10.1038/emm.2016.157
Bonnard, C. et al. Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. J. Clin. Invest. 118, 789–800 (2008).
pubmed: 18188455 pmcid: 2176186
Kang, J. K. et al. Increased intracellular Ca
pubmed: 29078297 pmcid: 5692539 doi: 10.1073/pnas.1706489114
Chen, K.-E., Tillu, V. A., Chandra, M. & Collins, B. M. Molecular basis for membrane recruitment by the PX and C2 domains of class II phosphoinositide 3-kinase-C2α. Structure 26, 1612–1625.e1614 (2018).
pubmed: 30293811 doi: 10.1016/j.str.2018.08.010
Milburn, C. C. et al. Binding of phosphatidylinositol 3,4,5-trisphosphate to the pleckstrin homology domain of protein kinase B induces a conformational change. Biochem. J. 375, 531–538 (2003).
pubmed: 12964941 pmcid: 1223737 doi: 10.1042/bj20031229
Franke, T. F., Kaplan, D. R., Cantley, L. C. & Toker, A. Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science 275, 665–668 (1997).
pubmed: 9005852 doi: 10.1126/science.275.5300.665
Yu, J. W. et al. Genome-wide analysis of membrane targeting by S. cerevisiae pleckstrin homology domains. Mol. Cell 13, 677–688 (2004).
pubmed: 15023338 doi: 10.1016/S1097-2765(04)00083-8
Vonkova, I. et al. Lipid cooperativity as a general membrane-recruitment principle for PH domains. Cell Rep. 12, 1519–1530 (2015).
pubmed: 26299969 doi: 10.1016/j.celrep.2015.07.054
Ferguson, K. M., Lemmon, M. A., Schlessinger, J. & Sigler, P. B. Structure of the high affinity complex of inositol trisphosphate with a phospholipase C pleckstrin homology domain. Cell 83, 1037–1046 (1995).
pubmed: 8521504 doi: 10.1016/0092-8674(95)90219-8
Le Huray, K. I. P., Wang, H., Sobott, F. & Kalli, A. C. Systematic simulation of the interactions of pleckstrin homology domains with membranes. Sci. Adv. 8, eabn6992 (2022).
pubmed: 35857458 pmcid: 9258823 doi: 10.1126/sciadv.abn6992
Singh, N. et al. Redefining the specificity of phosphoinositide-binding by human PH domain-containing proteins. Nat. Commun. 12, 4339 (2021).
pubmed: 34267198 pmcid: 8282632 doi: 10.1038/s41467-021-24639-y
Lemmon, M. A. Pleckstrin homology (PH) domains and phosphoinositides. Biochem. Soc. Symp. 74, 81–93, (2007).
Jennifer, M. K. et al. Specificity and promiscuity in phosphoinositide binding by pleckstrin homology domains*. J. Biol. Chem. 273, 30497–30508 (1998).
doi: 10.1074/jbc.273.46.30497
Lemmon, M. A., Ferguson, K. M., O’Brien, R., Sigler, P. B. & Schlessinger, J. Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain. Proc. Natl Acad. Sci. USA 92, 10472–10476 (1995).
pubmed: 7479822 pmcid: 40633 doi: 10.1073/pnas.92.23.10472
Lindvall, J. M. et al. Bruton’s tyrosine kinase: cell biology, sequence conservation, mutation spectrum, siRNA modifications, and expression profiling. Immunol. Rev. 203, 200–215 (2005).
pubmed: 15661031 doi: 10.1111/j.0105-2896.2005.00225.x
Taniguchi, C. M., Emanuelli, B. & Kahn, C. R. Critical nodes in signalling pathways: insights into insulin action. Nat. Rev. Mol. Cell Biol. 7, 85–96 (2006).
pubmed: 16493415 doi: 10.1038/nrm1837
Shepherd, P. R., Withers, D. J. & Siddle, K. Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling. Biochem. J. 333, 471–490 (1998).
pubmed: 9677303 pmcid: 1219607 doi: 10.1042/bj3330471
Yoon, M.-S. & Choi, C. S. The role of amino acid-induced mammalian target of rapamycin complex 1(mTORC1) signaling in insulin resistance. Exp. Mol. Med. 48, e201–e201 (2016).
pubmed: 27534530 pmcid: 4686696 doi: 10.1038/emm.2015.93
Parker, P. J., Caudwell, F. B. & Cohen, P. Glycogen synthase from rabbit skeletal muscle; effect of insulin on the state of phosphorylation of the seven phosphoserine residues in vivo. Eur. J. Biochem. 130, 227–234 (1983).
pubmed: 6402364 doi: 10.1111/j.1432-1033.1983.tb07140.x
Manning, B. D. & Toker, A. AKT/PKB signaling: navigating the network. Cell 169, 381–405 (2017).
pubmed: 28431241 pmcid: 5546324 doi: 10.1016/j.cell.2017.04.001
Datta, S. R. et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231–241 (1997).
pubmed: 9346240 doi: 10.1016/S0092-8674(00)80405-5
Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor. Cell 96, 857–868 (1999).
pubmed: 10102273 doi: 10.1016/S0092-8674(00)80595-4
Porstmann, T. et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab. 8, 224–236 (2008).
pubmed: 18762023 pmcid: 2593919 doi: 10.1016/j.cmet.2008.07.007
Yang, L. et al. The mTORC1 effectors S6K1 and 4E-BP play different roles in CNS axon regeneration. Nat. Commun. 5, 5416 (2014).
pubmed: 25382660 doi: 10.1038/ncomms6416
Kurlawalla-Martinez, C. et al. Insulin hypersensitivity and resistance to streptozotocin-induced diabetes in mice lacking PTEN in adipose tissue. Mol. Cell. Biol. 25, 2498–2510 (2005).
pubmed: 15743841 pmcid: 1061603 doi: 10.1128/MCB.25.6.2498-2510.2005
Butler, M. et al. Specific inhibition of PTEN expression reverses hyperglycemia in diabetic mice. Diabetes 51, 1028–1034 (2002).
pubmed: 11916922 doi: 10.2337/diabetes.51.4.1028
Yang, X. et al. Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature 451, 964–969 (2008).
pubmed: 18288188 doi: 10.1038/nature06668
Ande, S. R. & Mishra, S. Prohibitin interacts with phosphatidylinositol 3,4,5-triphosphate (PIP3) and modulates insulin signaling. Biochem. Biophys. Res. Commun. 390, 1023–1028 (2009).
pubmed: 19854158 doi: 10.1016/j.bbrc.2009.10.101
Ande, S. R., Moulik, S. & Mishra, S. Interaction between O-GlcNAc modification and tyrosine phosphorylation of prohibitin: implication for a novel binary switch. PLoS ONE 4, e4586 (2009).
pubmed: 19238206 pmcid: 2642629 doi: 10.1371/journal.pone.0004586
Whelan, S. A., Lane, M. D. & Hart, G. W. Regulation of the O-linked β-N-acetylglucosamine transferase by insulin signaling. J. Biol. Chem. 283, 21411–21417 (2008).
pubmed: 18519567 pmcid: 2490780 doi: 10.1074/jbc.M800677200
Han, E. K. H., McGonigal, T., Butler, C., Giranda, V. L. & Luo, Y. Characterization of Akt overexpression in MiaPaCa-2 cells: prohibitin is an Akt substrate both in vitro and in cells. Anticancer Res. 28, 957–963 (2008).
pubmed: 18507042
Brazil, D. P., Yang, Z. Z. & Hemmings, B. A. Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem. Sci. 29, 233–242 (2004).
pubmed: 15130559 doi: 10.1016/j.tibs.2004.03.006
Gao, T., Furnari, F. & Newton, A. C. PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol. Cell 18, 13–24 (2005).
pubmed: 15808505 doi: 10.1016/j.molcel.2005.03.008
Cahalan, M. D. & Chandy, K. G. The functional network of ion channels in T lymphocytes. Immunol. Rev. 231, 59–87 (2009).
pubmed: 19754890 pmcid: 3133616 doi: 10.1111/j.1600-065X.2009.00816.x
Calì, T., Brini, M. & Carafoli, E. Regulation of cell calcium and role of plasma membrane calcium ATPases. Int. Rev. Cell Mol. Biol. 332, 259–296 (2017).
Stafford, N., Wilson, C., Oceandy, D., Neyses, L. & Cartwright, E. J. The plasma membrane calcium ATPases and their role as major new players in human disease. Physiol. Rev. 97, 1089–1125 (2017).
pubmed: 28566538 doi: 10.1152/physrev.00028.2016
Chemaly, E. R., Troncone, L. & Lebeche, D. SERCA control of cell death and survival. Cell Calcium 69, 46–61 (2018).
pubmed: 28747251 doi: 10.1016/j.ceca.2017.07.001
Brandman, O., Liou, J., Park, W. S. & Meyer, T. STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca
pubmed: 18160041 pmcid: 2680164 doi: 10.1016/j.cell.2007.11.039
Carrasco, S. & Meyer, T. STIM proteins and the endoplasmic reticulum-plasma membrane junctions. Annu. Rev. Biochem. 80, 973–1000 (2011).
pubmed: 21548779 pmcid: 3897197 doi: 10.1146/annurev-biochem-061609-165311
Bugrim, A. E. Regulation of Ca
pubmed: 10378083 doi: 10.1054/ceca.1999.0027
Mikoshiba, K. IP3 receptor/Ca
pubmed: 17697045 doi: 10.1111/j.1471-4159.2007.04825.x
Foskett, J. K., White, C., Cheung, K.-H. & Mak, D.-O. D. Inositol trisphosphate receptor Ca
pubmed: 17429043 doi: 10.1152/physrev.00035.2006
Zhang, M., Tanaka, T. & Ikura, M. Calcium-induced conformational transition revealed by the solution structure of apo calmodulin. Nat. Struct. Biol. 2, 758–767 (1995).
pubmed: 7552747 doi: 10.1038/nsb0995-758
Choi, M. S. K., Brines, R. D., Holman, M. J. & Klaus, G. G. B. Induction of NF-AT in normal B lymphocytes by anti-immunoglobulin or CD40 ligand in conjunction with IL-4. Immunity 1, 179–187 (1994).
pubmed: 7889406 doi: 10.1016/1074-7613(94)90096-5
Khan, M. T., Wagner, L., Yule, D. I., Bhanumathy, C. & Joseph, S. K. Akt kinase phosphorylation of inositol 1,4,5-trisphosphate receptors. J. Biol. Chem. 281, 3731–3737 (2006).
pubmed: 16332683 doi: 10.1074/jbc.M509262200
Marchi, S. et al. Selective modulation of subtype III IP3R by Akt regulates ER Ca2+ release and apoptosis. Cell Death Dis. 3, e304–e304 (2012).
pubmed: 22552281 pmcid: 3366079 doi: 10.1038/cddis.2012.45
Wang, Y. et al. Inositol-1,4,5-trisphosphate receptor regulates hepatic gluconeogenesis in fasting and diabetes. Nature 485, 128–132 (2012).
pubmed: 22495310 pmcid: 3343222 doi: 10.1038/nature10988
Catalucci, D. et al. Akt increases sarcoplasmic reticulum Ca
pubmed: 19696029 pmcid: 2788869 doi: 10.1074/jbc.M109.036566
Bruce, J. I. E. Metabolic regulation of the PMCA: role in cell death and survival. Cell Calcium 69, 28–36 (2018).
pubmed: 28625348 pmcid: 5761718 doi: 10.1016/j.ceca.2017.06.001
Carafoli, E. Biogenesis: plasma membrane calcium ATPase: 15 years of work on the purified enzyme1. FASEB J. 8, 993–1002 (1994).
pubmed: 7926378 doi: 10.1096/fasebj.8.13.7926378
Kobayashi, Y. et al. Mice lacking hypertension candidate gene ATP2B1 in vascular smooth muscle cells show significant blood pressure elevation. Hypertension 59, 854–860 (2012).
pubmed: 22311909 doi: 10.1161/HYPERTENSIONAHA.110.165068
Fraze, E. et al. Ambient plasma free fatty acid concentrations in noninsulin-dependent diabetes mellitus: evidence for insulin resistance. J. Clin. Endocrinol. Metab. 61, 807–811 (1985).
pubmed: 3900120 doi: 10.1210/jcem-61-5-807
Denisenko, Y. K. et al. Lipid-induced mechanisms of metabolic syndrome. J. Obes. 2020, 5762395 (2020).
pubmed: 32963827 pmcid: 7491450 doi: 10.1155/2020/5762395
Feng, R. et al. Free fatty acids profile among lean, overweight and obese non-alcoholic fatty liver disease patients: a case–control study. Lipids Health Dis. 16, 165 (2017).
pubmed: 28870233 pmcid: 5584533 doi: 10.1186/s12944-017-0551-1
Carlsson, C., Borg, L. A. & Welsh, N. Sodium palmitate induces partial mitochondrial uncoupling and reactive oxygen species in rat pancreatic islets in vitro. Endocrinology 140, 3422–3428 (1999).
pubmed: 10433196 doi: 10.1210/endo.140.8.6908
Yamagishi, S. et al. Palmitate-induced apoptosis of microvascular endothelial cells and pericytes. Mol. Med. 8, 179–184 (2002).
pubmed: 12149567 pmcid: 2039986 doi: 10.1007/BF03402010
Gao, D. et al. The effects of palmitate on hepatic insulin resistance are mediated by NADPH oxidase 3-derived reactive oxygen species through JNK and p38MAPK pathways. J. Biol. Chem. 285, 29965–29973 (2010).
pubmed: 20647313 pmcid: 2943261 doi: 10.1074/jbc.M110.128694
Lambertucci, R. H. et al. Palmitate increases superoxide production through mitochondrial electron transport chain and NADPH oxidase activity in skeletal muscle cells. J. Cell. Physiol. 216, 796–804 (2008).
pubmed: 18446788 doi: 10.1002/jcp.21463
Lee, M. Y. et al. Peroxisome proliferator-activated receptor δ agonist attenuates hepatic steatosis by anti-inflammatory mechanism. Exp. Mol. Med. 44, 578–585 (2012).
pubmed: 22824914 pmcid: 3490079 doi: 10.3858/emm.2012.44.10.066
Park, H.-W. & Lee, J. H. Calcium channel blockers as potential therapeutics for obesity-associated autophagy defects and fatty liver pathologies. Autophagy 10, 2385–2386 (2014).
pubmed: 25484079 doi: 10.4161/15548627.2014.984268
Park, H.-W. et al. Pharmacological correction of obesity-induced autophagy arrest using calcium channel blockers. Nat. Commun. 5, 4834 (2014).
pubmed: 25189398 doi: 10.1038/ncomms5834
Rawnsley, D. R. & Diwan, A. Lysosome impairment as a trigger for inflammation in obesity: the proof is in the fat. EBioMedicine 56, 102824 (2020).
pubmed: 32540774 pmcid: 7300142 doi: 10.1016/j.ebiom.2020.102824
Cao, M., Luo, X., Wu, K. & He, X. Targeting lysosomes in human disease: from basic research to clinical applications. Signal Transduct. Target. Ther. 6, 379 (2021).
pubmed: 34744168 pmcid: 8572923 doi: 10.1038/s41392-021-00778-y
Lloyd-Evans, E. & Waller-Evans, H. Lysosomal Ca
Zhang, X., Li, X. & Xu, H. Phosphoinositide isoforms determine compartment-specific ion channel activity. Proc. Natl Acad. Sci. USA 109, 11384–11389 (2012).
pubmed: 22733759 pmcid: 3396495 doi: 10.1073/pnas.1202194109
Draznin, B. et al. Mechanism of insulin resistance induced by sustained levels of cytosolic free calcium in rat adipocytes. Endocrinology 125, 2341–2349 (1989).
pubmed: 2551647 doi: 10.1210/endo-125-5-2341
Draznin, B. et al. Possible role of cytosolic free calcium concentrations in mediating insulin resistance of obesity and hyperinsulinemia. J. Clin. Invest. 82, 1848–1852 (1988).
pubmed: 3143744 pmcid: 442763 doi: 10.1172/JCI113801
Fu, Z., Fan, Q., Zhou, Y., Zhao, Y. & He, Z. Elimination of intracellular calcium overload by BAPTA-AM-loaded liposomes: a promising therapeutic agent for acute liver failure. ACS Appl. Mater. Interfaces 11, 39574–39585 (2019).
pubmed: 31589019 doi: 10.1021/acsami.9b13690
Ovalle, F. et al. Verapamil and beta cell function in adults with recent-onset type 1 diabetes. Nat. Med. 24, 1108–1112 (2018).
pubmed: 29988125 pmcid: 6092963 doi: 10.1038/s41591-018-0089-4
He, Z. et al. BAPTA-AM nanoparticle for the curing of acute kidney injury induced by ischemia/reperfusion. J. Biomed. Nanotechnol. 14, 868–883 (2018).
pubmed: 29883558 doi: 10.1166/jbn.2018.2532
Kim, O.-H. et al. β-propeller phytase hydrolyzes insoluble Ca
pubmed: 20964370 doi: 10.1021/bi1010249
Bilkova, E. et al. Calcium directly regulates phosphatidylinositol 4,5-bisphosphate headgroup conformation and recognition. J. Am. Chem. Soc. 139, 4019–4024 (2017).
pubmed: 28177616 pmcid: 5364432 doi: 10.1021/jacs.6b11760
Lee, J. W. et al. Candesartan, an angiotensin-II receptor blocker, ameliorates insulin resistance and hepatosteatosis by reducing intracellular calcium overload and lipid accumulation. Exp. Mol. Med. 55, 910–925 (2023).
pubmed: 37121975 pmcid: 10238434 doi: 10.1038/s12276-023-00982-6

Auteurs

Byung-Chul Oh (BC)

Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon College of Medicine, Incheon, 21999, Republic of Korea. bcoh@gachon.ac.kr.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH