Low-opportunity-cost feed can reduce land-use-related environmental impacts by about one-third in China.
Journal
Nature food
ISSN: 2662-1355
Titre abrégé: Nat Food
Pays: England
ID NLM: 101761102
Informations de publication
Date de publication:
08 2023
08 2023
Historique:
received:
15
07
2022
accepted:
07
07
2023
medline:
24
8
2023
pubmed:
1
8
2023
entrez:
31
7
2023
Statut:
ppublish
Résumé
Feeding animals more low-opportunity-cost feed products (LCFs), such as food waste and by-products, may decrease food-feed competition for cropland. Using a feed allocation optimization model that considers the availability of feed sources and animal requirements for protein and energy, we explored the perspectives of feeding more LCFs to animals in China. We found that about one-third of the animal feed consisted of human-edible products, while only 23% of the available LCFs were used as feed during 2009-2013. An increased utilization of LCFs (45-90 Mt) could potentially save 25-32% of feed-producing cropland area without impairing livestock productivity. Parallelly, about one-third of feed-related irrigation water, synthetic fertilizer and greenhouse gas emissions would be saved. Re-allocating the saved cropland could sustain the food energy demand of 30-185 million people. Achieving the potentials of increased LCF use requires improved technology and coordination among stakeholders.
Identifiants
pubmed: 37525077
doi: 10.1038/s43016-023-00813-x
pii: 10.1038/s43016-023-00813-x
doi:
Substances chimiques
Greenhouse Gases
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
677-685Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 288–291 (2016).
pubmed: 27418509
doi: 10.1126/science.aaf2201
Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).
pubmed: 25383533
doi: 10.1038/nature13959
Uwizeye, A. et al. Nitrogen emissions from global livestock supply chains. Nat. Food 1, 437–446 (2020).
doi: 10.1038/s43016-020-0113-y
Alexander, P. et al. Drivers for global agricultural land use change: the nexus of diet, population, yield and bioenergy. Glob. Environ. Chang. 35, 138–147 (2015).
doi: 10.1016/j.gloenvcha.2015.08.011
Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).
pubmed: 22106295
pmcid: 3250154
doi: 10.1073/pnas.1116437108
Gao, L. & Bryan, B. A. Finding pathways to national-scale land-sector sustainability. Nature 544, 217–222 (2017).
pubmed: 28406202
doi: 10.1038/nature21694
Statistics database. Food and Agriculture Organization http://faostat.fao.org/ (2019).
Bai, Z. et al. China’s livestock transition: driving forces, impacts, and consequences. Sci. Adv. 4, 1–12 (2018).
doi: 10.1126/sciadv.aar8534
Röös, E. et al. Greedy or needy? Land use and climate impacts of food in 2050 under different livestock futures. Glob. Environ. Change 47, 1–12 (2017).
doi: 10.1016/j.gloenvcha.2017.09.001
Van Zanten, H. H. E. et al. Defining a land boundary for sustainable livestock consumption. Glob. Change Biol. 24, 4185–4194 (2018).
doi: 10.1111/gcb.14321
Kim, B. F. et al. Country-specific dietary shifts to mitigate climate and water crises. Glob. Environ. Change 62, 101926 (2020).
doi: 10.1016/j.gloenvcha.2019.05.010
Macdiarmid, J. I., Douglas, F. & Campbell, J. Eating like there’s no tomorrow: public awareness of the environmental impact of food and reluctance to eat less meat as part of a sustainable diet. Appetite 96, 487–493 (2016).
pubmed: 26476397
doi: 10.1016/j.appet.2015.10.011
Ma, L. et al. Exploring future food provision scenarios for China. Environ. Sci. Technol. 53, 1385–1393 (2019).
pubmed: 30609901
doi: 10.1021/acs.est.8b04375
Van Zanten, H. H. E., Van Ittersum, M. K. & De Boer, I. J. M. The role of farm animals in a circular food system. Glob. Food Sec. 21, 18–22 (2019).
doi: 10.1016/j.gfs.2019.06.003
zu Ermgassen, E. K. H. J., Phalan, B., Green, R. E. & Balmford, A. Reducing the land use of EU pork production: where there’s swill, there’s a way. Food Policy 58, 35–48 (2016).
pubmed: 26949285
pmcid: 4750877
doi: 10.1016/j.foodpol.2015.11.001
Cheng, S., Jin, Z. & Liu, G. China urban food and drink waste report (in Chinese). World Wide Fund Nat. 53, 1689–1699 (2018).
Wilkinson, J. M. Re-defining efficiency of feed use by livestock. Animal 5, 1014–1022 (2011).
pubmed: 22440097
doi: 10.1017/S175173111100005X
Schader, C. et al. Impacts of feeding less food-competing feedstuffs to livestock on global food system sustainability. J. R. Soc. Interface 12, 20150891 (2015).
pubmed: 26674194
pmcid: 4707862
doi: 10.1098/rsif.2015.0891
Gustavsson, J., Cederberg, C., Sonesson, U., van Otterdijk, R. & Meybeck, A. Global food losses and food waste: extent, causes and prevention. Int. Congr. Save Food! 38 (2011).
Dou, Z., Toth, J. D. & Westendorf, M. L. Food waste for livestock feeding: feasibility, safety, and sustainability implications. Glob. Food Sec. 17, 154–161 (2018).
doi: 10.1016/j.gfs.2017.12.003
Shurson, G. C. ‘What a waste’—can we improve sustainability of food animal production systems by recycling food waste streams into animal feed in an era of health, climate, and economic crises? Sustainability 12, 7071 (2020).
doi: 10.3390/su12177071
Dou, Z. Leveraging livestock to promote a circular food system. Front. Agric. Sci. Eng. 8, 188–192 (2021).
doi: 10.15302/J-FASE-2020370
Röös, E., Patel, M., Spångberg, J., Carlsson, G. & Rydhmer, L. Limiting livestock production to pasture and by-products in a search for sustainable diets. Food Policy 58, 1–13 (2016).
doi: 10.1016/j.foodpol.2015.10.008
Food waste and food waste prevention—estimates—Statistics Explained. eurostats https://ec.europa.eu/eurostat/statistics-explained/index.php?oldid=578564 (2023).
Zhao, H. et al. China’s future food demand and its implications for trade and environment. Nat. Sustain. 4, 1042–1051 (2021).
doi: 10.1038/s41893-021-00784-6
Xue, L. et al. China’s food loss and waste embodies increasing environmental impacts. Nat. Food 2, 519–528 (2021).
pubmed: 37117678
doi: 10.1038/s43016-021-00317-6
Taherzadeh, O. & Caro, D. Drivers of water and land use embodied in international soybean trade. J. Clean. Prod. 223, 83–93 (2019).
doi: 10.1016/j.jclepro.2019.03.068
Xu, J. et al. Double cropping and cropland expansion boost grain production in Brazil. Nat. Food 2, 264–273 (2021).
pubmed: 37118463
doi: 10.1038/s43016-021-00255-3
Wang, Y., Yuan, Z. & Tang, Y. Enhancing food security and environmental sustainability: a critical review of food loss and waste management. Resour. Environ. Sustain. 4, 100023 (2021).
Thi, N. B. D., Kumar, G. & Lin, C. Y. An overview of food waste management in developing countries: current status and future perspective. J. Environ. Manage. 157, 220–229 (2015).
pubmed: 25910976
doi: 10.1016/j.jenvman.2015.04.022
Müller, C. Anaerobic digestion of biodegradable solid waste in low- and middle-income countries. Eawag Aquat. Res. Switzerland 63 (2007).
Cobo, S., Dominguez-Ramos, A. & Irabien, A. Trade-offs between nutrient circularity and environmental impacts in the management of organic waste. Environ. Sci. Technol. 52, 10923–10933 (2018).
pubmed: 30170493
doi: 10.1021/acs.est.8b01590
Kim, M. H., Song, Y. E., Song, H. B., Kim, J. W. & Hwang, S. J. Evaluation of food waste disposal options by LCC analysis from the perspective of global warming: Jungnang case, South Korea. Waste Manag. 31, 2112–2120 (2011).
pubmed: 21612904
doi: 10.1016/j.wasman.2011.04.019
Salemdeeb, R., zu Ermgassen, E. K. H. J., Kim, M. H., Balmford, A. & Al-Tabbaa, A. Environmental and health impacts of using food waste as animal feed: a comparative analysis of food waste management options. J. Clean. Prod. 140, 871–880 (2017).
pubmed: 28050118
pmcid: 5127519
doi: 10.1016/j.jclepro.2016.05.049
Muscat, A. et al. Principles, drivers and opportunities of a circular bioeconomy. Nat. Food 2, 561–566 (2021).
pubmed: 37118163
doi: 10.1038/s43016-021-00340-7
Vázquez-Rowe, I., Ziegler-Rodriguez, K., Margallo, M., Kahhat, R. & Aldaco, R. Climate action and food security: strategies to reduce GHG emissions from food loss and waste in emerging economies. Resour. Conserv. Recycl. 170, 105562 (2021).
doi: 10.1016/j.resconrec.2021.105562
Cha, E., Toribio, J. A. L. M. L., Thomson, P. C. & Holyoake, P. K. Biosecurity practices and the potential for exhibited pigs to consume swill at agricultural shows in Australia. Prev. Vet. Med. 91, 122–129 (2009).
pubmed: 19525023
doi: 10.1016/j.prevetmed.2009.05.010
Sugiura, K., Yamatani, S., Watahara, M. & Onodera, T. Ecofeed, animal feed produced from recycled food waste. Vet. Ital. 45, 397–404 (2009).
pubmed: 20391403
Javourez, U., O’Donohue, M. & Hamelin, L. Waste-to-nutrition: a review of current and emerging conversion pathways. Biotechnol. Adv. 53, 107857 (2021).
pubmed: 34699952
doi: 10.1016/j.biotechadv.2021.107857
Parodi, A. et al. The potential of future foods for sustainable and healthy diets. Nat. Sustain. 1, 782–789 (2018).
doi: 10.1038/s41893-018-0189-7
Larson, C. Losing arable land, China faces stark choice: adapt or go hungry. Science 339, 644–645 (2013).
pubmed: 23393241
doi: 10.1126/science.339.6120.644
Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018).
pubmed: 30305731
doi: 10.1038/s41586-018-0594-0
Hu, Y. et al. Food production in China requires intensified measures to be consistent with national and provincial environmental boundaries. Nat. Food 1, 572–582 (2020).
pubmed: 37128013
doi: 10.1038/s43016-020-00143-2
Eshel, G. et al. A model for ‘sustainable’ US beef production. Nat. Ecol. Evol. 2, 81–85 (2018).
pubmed: 29203916
doi: 10.1038/s41559-017-0390-5
Brandt, P., Yesuf, G., Herold, M. & Rufino, M. C. Intensification of dairy production can increase the GHG mitigation potential of the land use sector in East Africa. Glob. Change Biol. 26, 568–585 (2020).
doi: 10.1111/gcb.14870
Food balances (-2013, old methodology and population). Food and Agriculture Organization https://www.fao.org/faostat/en/#data/FBSH (2013).
Miao, D. & Zhang, Y. National Grassland Monitoring Report (China Animal Husbandry, 2012).
Ma, L. et al. Modeling nutrient flows in the food chain of China. J. Environ. Qual. 39, 1279–1289 (2010).
pubmed: 20830916
doi: 10.2134/jeq2009.0403
China Statistical Yearbook. National Bureau of Statistics of China http://www.stats.gov.cn/english/Statisticaldata/AnnualData/ (2013).
Technical Conversion Factors for Agricultural Commodities (FAO, 1997).
Gustavsson, J., Cederberg, C., Sonesson, U. & Emanuelsson, A. The methodology of the FAO study: “Global Food Losses and Food Waste—extent, causes and prevention”— FAO, 2011 (The Swedish Institute for Food and Biotechnology, 2013).
Hou, Y. et al. Feed use and nitrogen excretion of livestock in EU-27. Agric. Ecosyst. Environ. 218, 232–244 (2016).
doi: 10.1016/j.agee.2015.11.025
Ministry of Agriculture (MOA) of the P.R.C. China Livestock Yearbook (China Agricultural Press, 2013).
van Hal, O. et al. Upcycling food leftovers and grass resources through livestock: Impact of livestock system and productivity. J. Clean. Prod. 219, 485–496 (2019).
doi: 10.1016/j.jclepro.2019.01.329
van Selm, B. et al. Circularity in animal production requires a change in the EAT-Lancet diet in Europe. Nat. Food 3, 66–73 (2022).
pubmed: 37118484
doi: 10.1038/s43016-021-00425-3
National Development and Reform Committee (NDRC) of the P.R.C. China Agricultural Products Cost-Benefit Yearbook (China Statistics Press, 2013).
Song, G., Li, M., Semakula, H. M. & Zhang, S. Food consumption and waste and the embedded carbon, water and ecological footprints of households in China. Sci. Total Environ. 529, 191–197 (2015).
pubmed: 26011615
doi: 10.1016/j.scitotenv.2015.05.068
Clune, S., Crossin, E. & Verghese, K. Systematic review of greenhouse gas emissions for different fresh food categories. J. Clean. Prod. 140, 766–783 (2017).
doi: 10.1016/j.jclepro.2016.04.082
van Hal, O., Weijenberg, A. A. A., de Boer, I. J. M. & van Zanten, H. H. E. Accounting for feed–food competition in environmental impact assessment: towards a resource efficient food-system. J. Clean. Prod. 240, 118241 (2019).
doi: 10.1016/j.jclepro.2019.118241
Mottet, A. et al. Livestock: On our plates or eating at our table? A new analysis of the feed/food debate. Glob. Food Sec. 14, 1–8 (2017).
doi: 10.1016/j.gfs.2017.01.001
Hennessy, D. et al. The net contribution of livestock to the supply of human edible protein: the case of Ireland. J. Agric. Sci. 159, 463–471 (2021).
doi: 10.1017/S0021859621000642
Sustainable Development Goals 2030. United Nations https://sustainabledevelopment.un.org (2015).