Normal-weight central obesity and risk of cardiovascular and microvascular events in adults with prediabetes or diabetes: Chinese and British cohorts.


Journal

Diabetes/metabolism research and reviews
ISSN: 1520-7560
Titre abrégé: Diabetes Metab Res Rev
Pays: England
ID NLM: 100883450

Informations de publication

Date de publication:
11 2023
Historique:
revised: 16 06 2023
received: 30 03 2023
accepted: 14 07 2023
medline: 3 11 2023
pubmed: 1 8 2023
entrez: 1 8 2023
Statut: ppublish

Résumé

To investigate the relationship between body fat distribution and risk of cardiometabolic and microvascular events among individuals with prediabetes or diabetes with normal body mass index (BMI). A total of 17,232 participants with prediabetes or diabetes from UK Biobank (UKB) with 12-year follow-up and 499 diabetic participants from China with 2-year follow-up with normal BMI were included. Anthropometric measurements of waist circumference (WC), waist-to-hip ratio (WHR) and waist-to-height ratio (WHtR), and body fat composition assessment of trunk-to-leg fat ratio (TLFR) were obtained. Outcomes included incident all-cause and cardiovascular mortality and macrovascular and microvascular diseases. In British cohort, participants with central obesity defined by WHR had 27%-54% higher risk of incident all-cause mortality (hazard ratio (HR) 1.42, 95% confidence interval (CI): 1.23-1.64), cardiovascular mortality (HR 1.54 [1.15-2.07]), myocardial infarction (HR = 1.43 [1.15, 1.78]), stroke (HR 1.26 [0.90, 1.75]), heart failure (HR = 1.27 [1.00, 1.61]), diabetic nephropathy (HR 1.33 [1.07, 1.65]), and diabetic retinopathy (DR) (HR = 1.48 [1.12, 1.96]) than those without obesity. Central obesity defined by WC and WHtR was associated with 40%-44% and 23%-98% higher risks of developing diabetic events, respectively. In the Chinese cohort, individuals with abdominal obesity, defined by WC (HR 1.44) or WHtR (HR 1.43) but not by WHR, carried more than 40% higher risk of developing DR than those without it. Higher TLFR carried 1.30-2.85 times higher risk of CVD and microvascular diseases among the dysglycemic population. Body fat distribution diseases among individuals with prediabetes or diabetes are associated with an increased risk of cardiometabolic and microvascular diseases independent of BMI.

Identifiants

pubmed: 37525502
doi: 10.1002/dmrr.3707
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e3707

Informations de copyright

© 2023 John Wiley & Sons Ltd.

Références

Carnethon MR, De Chavez PJ, Biggs ML, et al. Association of weight status with mortality in adults with incident diabetes. JAMA. 2012;308(6):581-590. https://doi.org/10.1001/jama.2012.9282
Han SJ, Boyko EJ. The evidence for an obesity paradox in type 2 diabetes mellitus. Diabetes Metab J. 2018;42(3):179-187. https://doi.org/10.4093/dmj.2018.0055
El Sayed NA, Aleppo G, Aroda VR, et al. Obesity and weight management for the prevention and treatment of type 2 diabetes: standards of Care in diabetes-2023. Diabetes Care. 2023;46(Supplment_1):S128-S139. 8. https://doi.org/10.2337/dc23-S008
Li W, Katzmarzyk PT, Horswell R, et al. Body mass index and stroke risk among patients with type 2 diabetes mellitus. Stroke. 2015;46(1):164-169. https://doi.org/10.1161/strokeaha.114.006718
Thomas G, Khunti K, Curcin V, et al. Obesity paradox in people newly diagnosed with type 2 diabetes with and without prior cardiovascular disease. Diabetes Obes Metab. 2014;16(4):317-325. https://doi.org/10.1111/dom.12217
Xing Z, Pei J, Huang J, Peng X, Chen P, Hu X. Relationship of obesity to adverse events among patients with mean 10-year history of type 2 diabetes mellitus: results of the ACCORD study. J Am Heart Assoc. 2018;7(22):e010512. https://doi.org/10.1161/jaha.118.010512
Nakanishi S, Hirukawa H, Shimoda M, et al. Comparison of HbA1c levels and body mass index for prevention of diabetic kidney disease: a retrospective longitudinal study using outpatient clinical data in Japanese patients with type 2 diabetes mellitus. Diabetes Res Clin Pract. 2019;155:107807. https://doi.org/10.1016/j.diabres.2019.107807
Rossi MC, Nicolucci A, Pellegrini F, et al. Obesity and changes in urine albumin/creatinine ratio in patients with type 2 diabetes: the DEMAND study. Nutr Metab Cardiovasc Dis. 2010;20(2):110-116. https://doi.org/10.1016/j.numecd.2009.02.013
Tanaka S, Tanaka S, Iimuro S, et al. Maximum BMI and microvascular complications in a cohort of Japanese patients with type 2 diabetes: the Japan Diabetes Complications Study. J Diabetes Complications. 2016;30(5):790-797. https://doi.org/10.1016/j.jdiacomp.2016.02.020
Bentata Y. Abouqal R Paradoxical association between body mass index, renal progression, and cardiovascular disease in elderly adults with type 2 diabetes mellitus. J Am Geriatr Soc. 2014;62(10):2002-2004. https://doi.org/10.1111/jgs.13058
Chung HF, Al Mamun A, Huang MC, et al. Obesity, weight change, and chronic kidney disease in patients with type 2 diabetes mellitus: a longitudinal study in Taiwan. J Diabetes. 2017;9(11):983-993. https://doi.org/10.1111/1753-0407.12514
Klein R, Klein BE. Moss SE Is obesity related to microvascular and macrovascular complications in diabetes? The Wisconsin Epidemiologic Study of Diabetic Retinopathy. Arch Intern Med. 1997;157(6):650-656. https://doi.org/10.1001/archinte.1997.00440270094008
Sahakyan KR, Somers VK, Rodriguez-Escudero JP, et al. Normal-weight central obesity: implications for total and cardiovascular mortality. Ann Intern Med. 2015;163(11):827-835. https://doi.org/10.7326/m14-2525
Zhang C, Rexrode KM, van Dam RM, Hu FB. Abdominal obesity and the risk of all-cause, cardiovascular, and cancer mortality: sixteen years of follow-up in US women. Circulation. 2008;117(13):1658-1667. https://doi.org/10.1161/circulationaha.107.739714
Ke JF, Wang JW, Lu JX, Zhang ZH, Liu Y, Li LX. Waist-to-height ratio has a stronger association with cardiovascular risks than waist circumference, waist-hip ratio and body mass index in type 2 diabetes. Diabetes Res Clin Pract. 2022;183:109151. https://doi.org/10.1016/j.diabres.2021.109151
Dixon JB, Egger GJ, Finkelstein EA, Kral JG, Lambert GW. Obesity paradox' misunderstands the biology of optimal weight throughout the life cycle. Int J Obes. 2015;39(1):82-84. https://doi.org/10.1038/ijo.2014.59
Bowman K, Atkins JL, Delgado J, et al. Central adiposity and the overweight risk paradox in aging: follow-up of 130,473 UK Biobank participants. Am J Clin Nutr. 2017;106(1):130-135. https://doi.org/10.3945/ajcn.116.147157
Cerhan JR, Moore SC, Jacobs EJ, et al. A pooled analysis of waist circumference and mortality in 650,000 adults. Mayo Clin Proc. 2014;89(3):335-345. https://doi.org/10.1016/j.mayocp.2013.11.011
Wormser D, Kaptoge S, Di Angelantonio E, et al. Separate and combined associations of body-mass index and abdominal adiposity with cardiovascular disease: collaborative analysis of 58 prospective studies. Lancet. 2011;377(9771):1085-1095. https://doi.org/10.1016/s0140-6736(11)60105-0
Flegal KM, Graubard Bi J. The American journal of clinical nutrition. Estimates of excess deaths associated with body mass index and other anthropometric variables. Am J Clin Nutr. 2009;89(4):1213-1219. https://doi.org/10.3945/ajcn.2008.26698
Tchkonia T, Thomou T, Zhu Y, et al. Mechanisms and metabolic implications of regional differences among fat depots. Cell Metab. 2013;17(5):644-656. https://doi.org/10.1016/j.cmet.2013.03.008
Karpe F. Pinnick KE Biology of upper-body and lower-body adipose tissue--link to whole-body phenotypes. Nat Rev Endocrinol. 2015;11(2):90-100. https://doi.org/10.1038/nrendo.2014.185
Chen GC, Arthur R, Iyengar NM, et al. Association between regional body fat and cardiovascular disease risk among postmenopausal women with normal body mass index. Eur Heart J. 2019;40(34):2849-2855. https://doi.org/10.1093/eurheartj/ehz391
Vasan SK, Osmond C, Canoy D, et al. Comparison of regional fat measurements by dual-energy X-ray absorptiometry and conventional anthropometry and their association with markers of diabetes and cardiovascular disease risk. Int J Obes. 2018;42(4):850-857. https://doi.org/10.1038/ijo.2017.289
Vistisen D, Witte DR, Brunner EJ, et al. Risk of cardiovascular disease and death in individuals with prediabetes defined by different criteria: the whitehall II study. Diabetes Care. 2018;41(4):899-906. https://doi.org/10.2337/dc17-2530
Ali MK, Bullard KM, Saydah S, Imperatore G, Gregg EW. Cardiovascular and renal burdens of prediabetes in the USA: analysis of data from serial cross-sectional surveys, 1988-2014. Lancet Diabetes Endocrinol. 2018;6(5):392-403. https://doi.org/10.1016/s2213-8587(18)30027-5
Nishida C, Ko GT, Kumanyika S. Body fat distribution and noncommunicable diseases in populations: overview of the 2008 WHO expert consultation on waist circumference and waist-hip ratio. Eur J Clin Nutr. 2010;64(1):2-5. https://doi.org/10.1038/ejcn.2009.139
Ashwell M, Gibson S. A proposal for a primary screening tool: 'Keep your waist circumference to less than half your height. BMC Med. 2014;12(1):207. https://doi.org/10.1186/s12916-014-0207-1
Ashwell M, Gibson S. Waist to height ratio is a simple and effective obesity screening tool for cardiovascular risk factors: analysis of data from the British National Diet and Nutrition Survey of adults aged 19-64 years. Obes Facts. 2009;2(2):97-103. https://doi.org/10.1159/000203363
Anthropometry UK Biobank. 2014. Accessed 29 May 2022. https://biobank.ndph.ox.ac.uk/ukb/ukb/docs/Anthropometry.pdf
Ogle GD, Allen JR, Humphries IR, et al. Body-composition assessment by dual-energy x-ray absorptiometry in subjects aged 4-26 y. Am J Clin Nutr. 1995;61(4):746-753. https://doi.org/10.1093/ajcn/61.4.746
American Diabetes Association Professional Practice Committee. 2. Classification and diagnosis of diabetes: standards of medical Care in diabetes-2022. Diabetes Care. 2022;45((Suppl 1)):S17-S38. https://doi.org/10.2337/dc22-S002
Grading diabetic retinopathy from stereoscopic color fundus photographs--an extension of the modified Airlie House classification. ETDRS report number 10. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology. 1991;98:786-806.
Pischon T, Boeing H, Hoffmann K, et al. General and abdominal adiposity and risk of death in Europe. N Engl J Med. 2008;359(20):2105-2120. https://doi.org/10.1056/NEJMoa0801891
Rexrode KM, Carey VJ, Hennekens CH, et al. Abdominal adiposity and coronary heart disease in women. JAMA. 1998;280(21):1843-1848. https://doi.org/10.1001/jama.280.21.1843
Stefan N, Schick F, Hu Causes H. Characteristics, and consequences of metabolically unhealthy normal weight in humans. Cell Metab. 2017;26(2):292-300. https://doi.org/10.1016/j.cmet.2017.07.008
Tchernof A, Després JP. Després JP Pathophysiology of human visceral obesity: an update. Physiol Rev. 2013;93(1):359-404. https://doi.org/10.1152/physrev.00033.2011
Guasch-Ferré M, Hruby A, Toledo E, et al. Metabolomics in prediabetes and diabetes: a systematic review and meta-analysis. Diabetes Care. 2016;39(5):833-846. https://doi.org/10.2337/dc15-2251
Sarangi R, Padhi S, Mohapatra S, et al. Serum high sensitivity C-reactive protein, nitric oxide metabolites, plasma fibrinogen, and lipid parameters in Indian type 2 diabetic males. Diabetes Metab Syndr. 2012;6(1):9-14. https://doi.org/10.1016/j.dsx.2012.05.015
Barnett KN, Ogston SA, McMurdo ME, Morris AD, Evans JMM. A 12-year follow-up study of all-cause and cardiovascular mortality among 10,532 people newly diagnosed with Type 2 diabetes in Tayside, Scotland. Diabet Med. 2010;27(10):1124-1129. https://doi.org/10.1111/j.1464-5491.2010.03075.x
Zaccardi F, Khan H, Laukkanen JA. Diabetes mellitus and risk of sudden cardiac death: a systematic review and meta-analysis. Int J Cardiol. 2014;177(2):535-537. https://doi.org/10.1016/j.ijcard.2014.08.105
Cirulli ET, Guo L, Leon Swisher C, et al. Profound perturbation of the metabolome in obesity is associated with health risk. Cell Metab. 2019;29(2):488-500.e482. https://doi.org/10.1016/j.cmet.2018.09.022
Ottosson F, Smith E, Ericson U, et al. Metabolome-defined obesity and the risk of future type 2 diabetes and mortality. Diabetes Care. 2022;45(5):1260-1267. https://doi.org/10.2337/dc21-2402
Man RE, Sabanayagam C, Chiang PP, et al. Differential association of generalized and abdominal obesity with diabetic retinopathy in asian patients with type 2 diabetes. JAMA Ophthalmol. 2016;134(3):251-257. https://doi.org/10.1001/jamaophthalmol.2015.5103
Moh A, Neelam K, Zhang X, et al. Excess visceral adiposity is associated with diabetic retinopathy in a multiethnic Asian cohort with longstanding type 2 diabetes. Endocr Res. 2018;43(3):186-194. https://doi.org/10.1080/07435800.2018.1451541
Grobbee DE. Bots ML Carotid artery intima-media thickness as an indicator of generalized atherosclerosis. J Intern Med. 1994;236(5):567-573. https://doi.org/10.1111/j.1365-2796.1994.tb00847.x
Lorenz MW, Markus HS, Bots ML, Rosvall M, Sitzer M. Prediction of clinical cardiovascular events with carotid intima-media thickness: a systematic review and meta-analysis. Circulation. 2007;115(4):459-467. https://doi.org/10.1161/circulationaha.106.628875
Parish S, Arnold M, Clarke R, et al. Assessment of the role of carotid atherosclerosis in the association between major cardiovascular risk factors and ischemic stroke subtypes. JAMA Netw Open. 2019;2(5):e194873. https://doi.org/10.1001/jamanetworkopen.2019.4873
Wada S, Koga M, Minematsu K, et al. Baseline carotid intima-media thickness and stroke recurrence during secondary prevention with pravastatin. Stroke. 2019;50(6):1586-1589. https://doi.org/10.1161/strokeaha.119.024968
Scicali R, Giral P, D'Erasmo L, et al. High TG to HDL ratio plays a significant role on atherosclerosis extension in prediabetes and newly diagnosed type 2 diabetes subjects. Diabetes Metab Res Rev. 2021;37(2):e3367. https://doi.org/10.1002/dmrr.3367
Skrypnik D, Bogdański P, Mądry E, et al. Effects of endurance and endurance strength training on body composition and physical capacity in women with abdominal obesity. Obes Facts. 2015;8(3):175-187. https://doi.org/10.1159/000431002

Auteurs

Pingting Zhong (P)

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China.

Shaoying Tan (S)

School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China.
Research Centre for SHARP Vision, The Hong Kong Polytechnic University, Hong Kong, China.
Centre for Eye and Vision Research (CEVR), Hong Kong, China.

Zhuoting Zhu (Z)

Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia.

Ziyu Zhu (Z)

Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.

Yi Liang (Y)

Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.

Wenyong Huang (W)

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China.

Wei Wang (W)

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH