Growth form and leaf habit drive contrasting effects of Arctic amplification in long-lived woody species.

Arctic amplification climate-growth association ring width tree and shrub tundra vegetation

Journal

Global change biology
ISSN: 1365-2486
Titre abrégé: Glob Chang Biol
Pays: England
ID NLM: 9888746

Informations de publication

Date de publication:
10 2023
Historique:
received: 21 03 2023
accepted: 15 07 2023
medline: 20 9 2023
pubmed: 1 8 2023
entrez: 1 8 2023
Statut: ppublish

Résumé

Current global change is inducing heterogeneous warming trends worldwide, with faster rates at higher latitudes in the Northern Hemisphere. Consequently, tundra vegetation is experiencing an increase in growth rate and uneven but expanding distribution. Yet, the drivers of this heterogeneity in woody species responses are still unclear. Here, applying a retrospective approach and focusing on long-term responses, we aim to get insight into growth trends and climate sensitivity of long-lived woody species belonging to different functional types with contrasting growth forms and leaf habits (shrub vs. tree and deciduous vs. evergreen). A total of 530 samples from 7 species (common juniper, dwarf birch, woolly willow, Norway spruce, lodgepole pine, rowan, and downy birch) were collected in 10 sites across Iceland. We modelled growth trends and contrasted yearly ring-width measurements, filtering in high- and low-frequency components, with precipitation, land- and sea-surface temperature records (1967-2018). Shrubs and trees showed divergent growth trends, with shrubs closely tracking the recent warming, whereas trees, especially broadleaved, showed strong fluctuations but no long-term growth trends. Secondary growth, particularly the high-frequency component, was positively correlated with summer temperatures for most of the species. On the contrary, growth responses to sea surface temperature, especially in the low frequency, were highly diverging between growth forms, with a strong positive association for shrubs and a negative for trees. Within comparable vegetation assemblage, long-lived woody species could show contrasting responses to similar climatic conditions. Given the predominant role of oceanic masses in shaping climate patterns in the Arctic and Low Arctic, further investigations are needed to deepen the knowledge on the complex interplay between coastal tundra ecosystems and land-sea surface temperature dynamics.

Identifiants

pubmed: 37526296
doi: 10.1111/gcb.16895
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

5896-5907

Subventions

Organisme : HORIZON EUROPE Marie Sklodowska-Curie Actions
ID : 895233
Organisme : INTERACT Transnational Access H2020
ID : 871120

Informations de copyright

© 2023 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

Références

Ackerman, D., Griffin, D., Hobbie, S. E., & Finlay, J. C. (2017). Arctic shrub growth trajectories differ across soil moisture levels. Global Change Biology, 23(10), 4294-4302. https://doi.org/10.1111/gcb.13677
Arnalds, O. (2015). The soils of Iceland. In Springer Nature (Ed.), Jokull (Vol. 56, Issue January 2008). Springer Nature. https://doi.org/10.1007/978-94-017-9621-7
Babst, F., Esper, J., & Parlow, E. (2010). Landsat TM/ETM+ and tree-ring based assessment of spatiotemporal patterns of the autumnal moth (Epirrita autumnata) in northernmost Fennoscandia. Remote Sensing of Environment, 114(3), 637-646. https://doi.org/10.1016/j.rse.2009.11.005
Babst, F., Poulter, B., Trouet, V., Tan, K., Neuwirth, B., Wilson, R., Carrer, M., Grabner, M., Tegel, W., Levanic, T., Panayotov, M., Urbinati, C., Bouriaud, O., Ciais, P., & Frank, D. (2013). Site- and species-specific responses of forest growth to climate across the European continent. Global Ecology and Biogeography, 22(6), 706-717. https://doi.org/10.1111/geb.12023
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., & Wood, E. F. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data, 5(1), 180214. https://doi.org/10.1038/sdata.2018.214
Beil, I., Buras, A., Hallinger, M., Smiljanić, M., & Wilmking, M. (2015). Shrubs tracing sea surface temperature-Calluna vulgaris on the Faroe Islands. International Journal of Biometeorology, 59(11), 1567-1575. https://doi.org/10.1007/s00484-015-0963-4
Berner, L. T., Massey, R., Jantz, P., Forbes, B. C., Macias-Fauria, M., Myers-Smith, I., Kumpula, T., Gauthier, G., Andreu-Hayles, L., Gaglioti, B. V., Burns, P., Zetterberg, P., D'Arrigo, R., & Goetz, S. J. (2020). Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nature Communications, 11(1), 4621. https://doi.org/10.1038/s41467-020-18479-5
Bjorkman, A. D., García Criado, M., Myers-Smith, I. H., Ravolainen, V., Jónsdóttir, I. S., Westergaard, K. B., Lawler, J. P., Aronsson, M., Bennett, B., Gardfjell, H., Heiðmarsson, S., Stewart, L., & Normand, S. (2020). Status and trends in Arctic vegetation: Evidence from experimental warming and long-term monitoring. Ambio, 49(3), 678-692. https://doi.org/10.1007/s13280-019-01161-6
Blondal, S. (1987). Afforestation and reforestation in Iceland. Arctic and Alpine Research, 19(4), 526-529. https://doi.org/10.2307/1551420
Bokhorst, S. F., Bjerke, J. W., Tømmervik, H., Callaghan, T. V., & Phoenix, G. K. (2009). Winter warming events damage sub-Arctic vegetation: Consistent evidence from an experimental manipulation and a natural event. Journal of Ecology, 97(6), 1408-1415. https://doi.org/10.1111/j.1365-2745.2009.01554.x
Bonan, G. B., Pollard, D., & Thompson, S. L. (1992). Effects of boreal forest vegetation on global climate. Letters to Nature, 359, 716-718.
Bonan, G. B., & Shugart, H. H. (1989). Environmental factors and ecological processes in boreal forests. Annual Review of Ecology and Systematics, 20, 1-28.
Brigham, E. O. (1988). The fast Fourier transform and its applications. Prentice-Hall, Inc.
Callaghan, T. V., Carlsson, B. A., & Tyler, N. J. C. (1989). Historical records of climate-related growth in Cassiope tetragona from the Arctic. Journal of Ecology, 77(3), 823-837.
Carrer, M., Dibona, R., Prendin, A. L., & Brunetti, M. (2023). Recent waning snowpack in the Alps is unprecedented in the last six centuries. Nature Climate Change, 13(2), 155-160. https://doi.org/10.1038/s41558-022-01575-3
Carrer, M., Pellizzari, E., Prendin, A. L., Pividori, M., & Brunetti, M. (2019). Winter precipitation-not summer temperature-is still the main driver for alpine shrub growth. Science of the Total Environment, 682, 171-179. https://doi.org/10.1016/j.scitotenv.2019.05.152
Chae, Y., Kang, S. M., Jeong, S.-J., Kim, B., & Frierson, D. M. W. (2015). Arctic greening can cause earlier seasonality of Arctic amplification. Geophysical Research Letters, 42(2), 536-541. https://doi.org/10.1002/2014GL061841
Chapin, F. S., & Shaver, G. R. (1989). Differences in growth and nutrient use among Arctic plant growth forms. Functional Ecology, 3(1), 73. https://doi.org/10.2307/2389677
Chapin, F. S., Sturm, M., Serreze, M. C., McFadden, J. P., Key, J. R., Lloyd, A. H., McGuire, A. D., Rupp, T. S., Lynch, A. H., Schimel, J. P., Beringer, J., Chapman, W. L., Epstein, H. E., Euskirchen, E. S., Hinzman, L. D., Jia, G., Ping, C.-L., Tape, K. D., Thompson, C. D. C., … Welker, J. M. (2005). Role of land-surface changes in Arctic summer warming. Science, 310(5748), 657-660. https://doi.org/10.1126/science.1117368
Cook, E. R., & Holmes, R. L. (1986). Adapted from users manual for program ARSTAN. In R. L. Holmes, R. K. Adams, & H. C. Fritts (Eds.), Tree-ring chronologies of Western North America: California, eastern Oregon and Northern Great Basin (pp. 50-65). Laboratory of TreeRing Research, The University of Arizona.
Cook, E. R., Shiyatov, S. G., Mazepa, V. S., Ecology, A., & Branch, U. (1990). Methods of dendrochronology. In E. R. Cook & L. A. Kairiukstis (Eds.), Methods of dendrochronology-Applications in the environmental sciences (Issue January). Springer. https://doi.org/10.1007/978-94-015-7879-0
De Groot, W. J., Thomas, P. A., & Wein, R. W. (1997). Betula nana L. and Betula glandulosa Michx. Journal of Ecology, 85(2), 241-264.
Devi, N., Hagedorn, F., Moiseev, P., Bugmann, H., Shiyatov, S. G., Mazepa, V., & Rigling, A. (2008). Expanding forests and changing growth forms of Siberian larch at the polar Urals treeline during the 20th century. Global Change Biology, 14(7), 1581-1591. https://doi.org/10.1111/j.1365-2486.2008.01583.x
Dobbert, S., Albrecht, E. C., Pape, R., & Löffler, J. (2022). Alpine shrub growth follows bimodal seasonal patterns across biomes-Unexpected environmental controls. Communications Biology, 5(1), 793. https://doi.org/10.1038/s42003-022-03741-x
Dobbert, S., Pape, R., & Löffler, J. (2021). Contrasting growth response of evergreen and deciduous arctic-alpine shrub species to climate variability. Ecosphere, 12(8), e03688. https://doi.org/10.1002/ecs2.3688
Dobbert, S., Pape, R., & Löffler, J. (2022). The application of dendrometers to alpine dwarf shrubs-A case study to investigate stem growth responses to environmental conditions. Biogeosciences, 19(7), 1933-1958. https://doi.org/10.5194/bg-19-1933-2022
Eggertsson, Ó., Castiglia, D. A., & Carrer, M. (2022). Natural regeneration of Lodgepole pine (Pinus contorta) in Steinadalur, SE-Iceland. Icelandic Agricultural Sciences, 35(May), 27-32. https://doi.org/10.16886/IAS.2022.03
Einarsson, M. A. (2007). Climate of Iceland. Quarterly Journal of the Royal Meteorological Society, 25(110), 175-177. https://doi.org/10.1002/qj.49702511010
Elmendorf, S. C., Henry, G. H. R., Hollister, R. D., Björk, R. G., Boulanger-Lapointe, N., Cooper, E. J., Cornelissen, J. H. C., Day, T. A., Dorrepaal, E., Elumeeva, T. G., Gill, M., Gould, W. A., Harte, J., Hik, D. S., Hofgaard, A., Johnson, D. R., Johnstone, J. F., Jónsdóttir, I. S., Jorgenson, J. C., … Wipf, S. (2012). Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nature Climate Change, 2(6), 453-457. https://doi.org/10.1038/nclimate1465
Farjon, A. (2005). A monograph of Cupressaceae and Sciadopitys. Royal Botanic Gardens, Kew.
Forbes, B. C., Fauria, M. M., & Zetterberg, P. (2010). Russian Arctic warming and ‘greening’ are closely tracked by tundra shrub willows. Global Change Biology, 16(5), 1542-1554. https://doi.org/10.1111/j.1365-2486.2009.02047.x
Francon, L., Roussel, E., Lopez-Saez, J., Saulnier, M., Stoffel, M., & Corona, C. (2023). Alpine shrubs have benefited more than trees from 20th century warming at a treeline ecotone site in the French Pyrenees. Agricultural and Forest Meteorology, 329, 109284. https://doi.org/10.1016/j.agrformet.2022.109284
Fritts, H. C. (1976). Tree rings and climate. Academic Press Inc. Ltd.
Gamm, C. M., Sullivan, P. F., Buchwal, A., Dial, R. J., Young, A. B., Watts, D. A., Cahoon, S. M. P., Welker, J. M., & Post, E. (2018). Declining growth of deciduous shrubs in the warming climate of continental western Greenland. Journal of Ecology, 106(2), 640-654. https://doi.org/10.1111/1365-2745.12882
García Criado, M., Myers-Smith, I., Bjorkman, A., Normand, S., Blach-Overgaard, A., Thomas, H., Eskelinen, A., Happonen, K., Alatalo, J., Anadon-Rosell, A., Aubin, I., te Beest, M., Betway-May, K., Blok, D., Buras, A., Cerabolini, B., Christie, K., Cornelissen, J. H., Forbes, B., … Virkkala, A. (2023). Plant traits poorly predict winner and loser shrub species in a warming tundra biome. Nature Communications, 14(1), 3837. https://doi.org/10.32942/x23s3m
García-Cervigón Morales, A. I., Olano Mendoza, J. M., Eugenio Gozalbo, M., & Camarero Martínez, J. J. (2012). Arboreal and prostrate conifers coexisting in Mediterranean high mountains differ in their climatic responses. Dendrochronologia, 30(4), 279-286. https://doi.org/10.1016/j.dendro.2012.02.004
Gazol, A., & Camarero, J. J. (2012). Mediterranean dwarf shrubs and coexisting trees present different radial-growth synchronies and responses to climate. Plant Ecology, 213(10), 1687-1698. https://doi.org/10.1007/s11258-012-0124-3
Girden, E. R. (1992). ANOVA: Repeated measures. Sage Publications, Inc.
Grace, J. (1989). Treelines. Philosophical Transactions of the Royal Society of London. B: Biological Sciences, 324(189), 233-245. https://doi.org/10.1098/rstb.1989.0046
Grace, J., Berninger, F., & Nagy, L. (2002). Impacts of climate change on the tree line. Annals of Botany, 90(4), 537-544. https://doi.org/10.1093/aob/mcf222
Guiot, J. (1991). The bootstrapped response function. Tree Ring Bulletin, 51, 39-41.
Hannak, N., & Eggertsson, Ó. (2020). The long-term effects of climatic factors on radial growth of downy birch (Betula pubescens) and rowan (Sorbus aucuparia) in East Iceland. Icelandic Agricultural Sciences, 33, 73-87. https://doi.org/10.16886/IAS.2020.07
Harris, I., Osborn, T. J., Jones, P., & Lister, D. (2020). Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data, 7(1), 109. https://doi.org/10.1038/s41597-020-0453-3
Havstrom, M., Callaghan, T. V., & Jonasson, S. (1993). Differential growth responses of Cassiope tetragona, an Arctic dwarf-shrub, to environmental perturbations among three contrasting high- and subarctic sites. Oikos, 66(3), 389-402.
Haynes, W. (2013). Tukey's test. In W. Dubitzky, O. Wolkenhauer, K.-H. Cho, & H. Yokota (Eds.), Encyclopedia of systems biology (pp. 2303-2304). Springer. https://doi.org/10.1007/978-1-4419-9863-7_1212
Hinzman, L. D., Deal, C. J., McGuire, A. D., Mernild, S. H., Polyakov, I. V., & Walsh, J. E. (2013). Trajectory of the Arctic as an integrated system. Ecological Applications, 23(8), 1837-1868. https://doi.org/10.1890/11-1498.1
Holmes, R. (1983). Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin. http://hdl.handle.net/10150/261223
Hudson, J. M. G., Henry, G. H. R., & Cornwell, W. K. (2011). Taller and larger: Shifts in Arctic tundra leaf traits after 16 years of experimental warming. Global Change Biology, 17(2), 1013-1021. https://doi.org/10.1111/j.1365-2486.2010.02294.x
IPCC. (2021). Assessment report 6 climate change 2021: The physical science basis. https://www.ipcc.ch/report/ar6/wg1/
Jónsdóttir, I. S., Magnússon, B., Gudmundsson, J., Elmarsdóttir, Á., & Hjartarson, H. (2005). Variable sensitivity of plant communities in Iceland to experimental warming. Global Change Biology, 11, 553-563. https://doi.org/10.1111/j.1365-2486.2005.00928.x
Körner, C. (2012a). Alpine treelines. Springer Basel. https://doi.org/10.1007/978-3-0348-0396-0
Körner, C. (2012b). Treelines will be understood once the functional difference between a tree and a shrub is. Ambio, 41(S3), 197-206. https://doi.org/10.1007/s13280-012-0313-2
Lehejček, J., Trkal, F., Doležal, J., & Čada, V. (2023). Alpine and Arctic tundra shrub populations show similar ontogenetic growth trends but differing absolute growth rates and lifespan. Dendrochronologia, 77(Suppl 3), 126046. https://doi.org/10.1016/j.dendro.2022.126046
Levanič, T., & Eggertsson, O. (2008). Climatic effects on birch (Betula pubescens Ehrh.) growth in Fnjoskadalur valley, northern Iceland. Dendrochronologia, 25(3), 135-143. https://doi.org/10.1016/j.dendro.2006.12.001
MacDonald, G. M., Kremenetski, K. V., & Beilman, D. W. (2008). Climate change and the northern Russian treeline zone. Philosophical Transactions of the Royal Society: B: Biological Sciences, 363(1501), 2283-2299. https://doi.org/10.1098/rstb.2007.2200
Macias-Fauria, M., Forbes, B. C., Zetterberg, P., & Kumpula, T. (2012). Eurasian Arctic greening reveals teleconnections and the potential for structurally novel ecosystems. Nature Climate Change, 2(8), 613-618. https://doi.org/10.1038/nclimate1558
Marteinsdóttir, B., Barrio, I. C., & Jónsdóttir, I. S. (2017). Assessing the ecological impacts of extensive sheep grazing in Iceland. Icelandic Agricultural Sciences, 30, 55-72. https://doi.org/10.16886/IAS.2017.07
Masek, J. G. (2002). Stability of boreal forest stands during recent climate change: Evidence from Landsat satellite imagery. Journal of Biogeography, 28(8), 967-976. https://doi.org/10.1046/j.1365-2699.2001.00612.x
Miles, V. V., & Esau, I. (2016). Spatial heterogeneity of greening and browning between and within bioclimatic zones in northern West Siberia. Environmental Research Letters, 11(11), 115002. https://doi.org/10.1088/1748-9326/11/11/115002
Myers-Smith, I. H., Elmendorf, S. C., Beck, P. S. A., Wilmking, M., Hallinger, M., Blok, D., Tape, K. D., Rayback, S. A., Macias-Fauria, M., Forbes, B. C., Speed, J. D. M., Boulanger-Lapointe, N., Rixen, C., Lévesque, E., Schmidt, N. M., Baittinger, C., Trant, A. J., Hermanutz, L., Collier, L. S., … Vellend, M. (2015). Climate sensitivity of shrub growth across the tundra biome. Nature Climate Change, 5(9), 887-891. https://doi.org/10.1038/nclimate2697
Myers-Smith, I. H., Forbes, B. C., Wilmking, M., Hallinger, M., Lantz, T., Blok, D., Tape, K. D., Macias-Fauria, M., Sass-Klaassen, U., Lévesque, E., Boudreau, S., Ropars, P., Hermanutz, L., Trant, A., Collier, L. S., Weijers, S., Rozema, J., Rayback, S. A., Schmidt, N. M., … Hik, D. S. (2011). Shrub expansion in tundra ecosystems: Dynamics, impacts and research priorities. Environmental Research Letters, 6(4), 045509. https://doi.org/10.1088/1748-9326/6/4/045509
Myers-Smith, I. H., Hallinger, M., Blok, D., Sass-Klaassen, U., Rayback, S. A., Weijers, S., Trant, J. A., Tape, K. D., Naito, A. T., Wipf, S., Rixen, C., Dawes, M. A., Wheeler, A. J., Buchwal, A., Baittinger, C., Macias-Fauria, M., Forbes, B. C., Lévesque, E., Boulanger-Lapointe, N., … Wilmking, M. (2015). Methods for measuring arctic and alpine shrub growth: A review. Earth-Science Reviews, 140, 1-13. https://doi.org/10.1016/j.earscirev.2014.10.004
Myers-Smith, I. H., Kerby, J. T., Phoenix, G. K., Bjerke, J. W., Epstein, H. E., Assmann, J. J., John, C., Andreu-Hayles, L., Angers-Blondin, S., Beck, P. S. A., Berner, L. T., Bhatt, U. S., Bjorkman, A. D., Blok, D., Bryn, A., Christiansen, C. T., Cornelissen, J. H. C., Cunliffe, A. M., Elmendorf, S. C., … Wipf, S. (2020). Complexity revealed in the greening of the Arctic. Nature Climate Change, 10(2), 106-117. https://doi.org/10.1038/s41558-019-0688-1
Normand, S., Randin, C., Ohlemüller, R., Bay, C., Høye, T. T., Kjaer, E. D., Körner, C., Lischke, H., Maiorano, L., Paulsen, J., Pearman, P. B., Psomas, A., Treier, U. A., Zimmermann, N. E., & Svenning, J.-C. (2013). A greener Greenland? Climatic potential and long-term constraints on future expansions of trees and shrubs. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1624), 20120479. https://doi.org/10.1098/rstb.2012.0479
Pellizzari, E., Camarero, J. J., Gazol, A., Granda, E., Shetti, R., Wilmking, M., Moiseev, P., Pividori, M., & Carrer, M. (2017). Diverging shrub and tree growth from the polar to the Mediterranean biomes across the European continent. Global Change Biology, 23(8), 3169-3180. https://doi.org/10.1111/gcb.13577
Pellizzari, E., Pividori, M., & Carrer, M. (2014). Winter precipitation effect in a mid-latitude temperature-limited environment: The case of common juniper at high elevation in the Alps. Environmental Research Letters, 9(10), 104021. https://doi.org/10.1088/1748-9326/9/10/104021
Phoenix, G. K., & Bjerke, J. W. (2016). Arctic browning: Extreme events and trends reversing arctic greening. Global Change Biology, 22, 2960-2962. https://doi.org/10.1111/gcb.13261
Power, C. C., Assmann, J. J., Prendin, A. L., Treier, U. A., Kerby, J. T., & Normand, S. (2022). Improving ecological insights from dendroecological studies of Arctic shrub dynamics: Research gaps and potential solutions. Science of the Total Environment, 851, 158008. https://doi.org/10.1016/j.scitotenv.2022.158008
Prager, C. M., Boelman, N. T., Eitel, J. U. H., Gersony, J. T., Greaves, H. E., Heskel, M. A., Magney, T. S., Menge, D. N. L., Naeem, S., Shen, C., Vierling, L. A., & Griffin, K. L. (2020). A mechanism of expansion: Arctic deciduous shrubs capitalize on warming-induced nutrient availability. Oecologia, 192(3), 671-685. https://doi.org/10.1007/s00442-019-04586-8
Previdi, M., Smith, K. L., & Polvani, L. M. (2021). Arctic amplification of climate change: A review of underlying mechanisms. Environmental Research Letters, 16(9), 093003. https://doi.org/10.1088/1748-9326/ac1c29
R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Rantanen, M., Karpechko, A. Y., Lipponen, A., Nordling, K., Hyvärinen, O., Ruosteenoja, K., Vihma, T., & Laaksonen, A. (2022). The Arctic has warmed nearly four times faster than the globe since 1979. Communications Earth & Environment, 3(1), 168. https://doi.org/10.1038/s43247-022-00498-3
Rayner, N. A., Parker, E. B. H., Folland, C. K., Alexander, L. V., & Rowell, D. P. (2003). Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research, 108(D14), 4407. https://doi.org/10.1029/2002JD002670
RinnTech. (2010). TSAP-win: Time series analysis and presentation for dendrochronology and related applications.
Rixen, C., Schwoerer, C., & Wipf, S. (2010). Winter climate change at different temporal scales in Vaccinium myrtillus, an Arctic and alpine dwarf shrub. Polar Research, 29(1), 85-94. https://doi.org/10.1111/j.1751-8369.2010.00155.x
San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., & Mauri, A. (2016). European forest tree species. Publication Office of the European Union. https://forest.jrc.ec.europa.eu/en/european-atlas/
Snorrason, A., & Kjartansson, B. (2017). Iceland. In S. Barreiro, M.-J. Schelhaas, R. E. McRoberts, & G. Kändler (Eds.), Forest inventory-based projection systems for wood and biomass availability (Vol. 29, p. 329). Springer International Publishing. https://doi.org/10.1007/978-3-319-56201-8
Snorrason, A., Traustason, B., Kjartansson, B. Þ., Heiðarsson, L., Ísleifsson, R., & Eggertsson, Ó. (2016). Náttúrulegt birki á Íslandi-ný úttekt á útbreiðslu þess og ástandi. Náttúrufraeðingurinn, 86(3-4), 97-111.
Soja, A. J., Tchebakova, N. M., French, N. H. F., Flannigan, M. D., Shugart, H. H., Stocks, B. J., Sukhinin, A. I., Parfenova, E. I., Chapin, F. S., & Stackhouse, P. W. (2007). Climate-induced boreal forest change: Predictions versus current observations. Global and Planetary Change, 56(3-4), 274-296. https://doi.org/10.1016/j.gloplacha.2006.07.028
Speer, J. H. (2010). Fundamentals of tree-ring research. University of Arizona Press. https://doi.org/10.1002/gea.20357
Stokes, M. A., & Smiley, T. L. (1968). An introduction to tree ring dating. University of Chicago Press.
Stow, D., Petersen, A., Hope, A., Engstrom, R., & Coulter, L. (2007). Greenness trends of Arctic tundra vegetation in the 1990s: Comparison of two NDVI data sets from NOAA AVHRR systems. International Journal of Remote Sensing, 28(21), 4807-4822. https://doi.org/10.1080/01431160701264284
Sturm, M., Holmgren, J., McFadden, J. P., Liston, G. E., Chapin, F. S., & Racine, C. H. (2001). Snow-shrub interactions in Arctic tundra: A hypothesis with climatic implications. Journal of Climate, 14(3), 336-344. https://doi.org/10.1175/1520-0442(2001)014<0336:SSIIAT>2.0.CO;2
Sturm, M., Racine, C., & Tape, K. (2001). Increasing shrub abundance in the Arctic. Nature, 411(6837), 546-547. https://doi.org/10.1038/35079180
Takahashi, K., & Okuhara, I. (2012). Comparison of climatic effects on radial growth of evergreen broad-leaved trees at their northern distribution limit and co-dominating deciduous broad-leaved trees and evergreen conifers. Ecological Research, 27(1), 125-132. https://doi.org/10.1007/s11284-011-0879-3
Tape, K. D., Sturm, M., & Racine, C. (2006). The evidence for shrub expansion in northern Alaska and the Pan-Arctic. Global Change Biology, 12(4), 686-702. https://doi.org/10.1111/j.1365-2486.2006.01128.x
Tei, S., Sugimoto, A., Liang, M., Yonenobu, H., Matsuura, Y., Osawa, A., Sato, H., Fujinuma, J., & Maximov, T. (2017). Radial growth and physiological response of coniferous trees to Arctic amplification. Journal of Geophysical Research: Biogeosciences, 122(11), 2786-2803. https://doi.org/10.1002/2016JG003745
Vaganov, E. A., Hughes, M. K., Kirdyanov, A. V., Schweingruber, F. H., & Silkin, P. (1999). Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Letters to Nature, 400, 149-151.
Vowles, T., & Björk, R. G. (2019). Implications of evergreen shrub expansion in the Arctic. Journal of Ecology, 107(2), 650-655. https://doi.org/10.1111/1365-2745.13081
Vuorinen, K. E. M., Oksanen, L., Oksanen, T., Pyykönen, A., Olofsson, J., & Virtanen, R. (2017). Open tundra persist, but arctic features decline-Vegetation changes in the warming Fennoscandian tundra. Global Change Biology, 23(9), 3794-3807. https://doi.org/10.1111/gcb.13710
Wąsowicz, P. (2020). Annotated checklist of vascular plants of Iceland. Fjölrit Náttúrufraeðistofnunar. https://doi.org/10.33112/1027-832X.57
Weijers, S. (2022). Declining temperature and increasing moisture sensitivity of shrub growth in the Low-Arctic erect dwarf-shrub tundra of western Greenland. Ecology and Evolution, 12(11), e9419. https://doi.org/10.1002/ece3.9419
Weijers, S., Buchwal, A., Blok, D., Löffler, J., & Elberling, B. (2017). High Arctic summer warming tracked by increased Cassiope tetragona growth in the world's northernmost polar desert. Global Change Biology, 23(11), 5006-5020. https://doi.org/10.1111/gcb.13747
Wipf, S., Stoeckli, V., & Bebi, P. (2009). Winter climate change in alpine tundra: Plant responses to changes in snow depth and snowmelt timing. Climatic Change, 94(1-2), 105-121. https://doi.org/10.1007/s10584-009-9546-x
Wood, S. N. (2006). Low-rank scale-invariant tensor product smooths for generalized additive mixed models. Biometrics, 62(4), 1025-1036. https://doi.org/10.1111/j.1541-0420.2006.00574.x
Zhang, W., Miller, P. A., Smith, B., Wania, R., Koenigk, T., & Döscher, R. (2013). Tundra shrubification and tree-line advance amplify arctic climate warming: Results from an individual-based dynamic vegetation model. Environmental Research Letters, 8(3), 034023. https://doi.org/10.1088/1748-9326/8/3/034023
Zhu, Z., Piao, S., Myneni, R. B., Huang, M., Zeng, Z., Canadell, J. G., Ciais, P., Sitch, S., Friedlingstein, P., Arneth, A., Cao, C., Cheng, L., Kato, E., Koven, C., Li, Y., Lian, X., Liu, Y., Liu, R., Mao, J., … Zeng, N. (2016). Greening of the Earth and its drivers. Nature Climate Change, 6(8), 791-795. https://doi.org/10.1038/nclimate3004

Auteurs

Davide Frigo (D)

Department of Land Environment Agriculture and Forestry, University of Padova, Legnaro, Italy.

Ólafur Eggertsson (Ó)

Icelandic Forest Research, Reykjavik, Iceland.

Angela Luisa Prendin (AL)

Department of Land Environment Agriculture and Forestry, University of Padova, Legnaro, Italy.
Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark.

Raffaella Dibona (R)

Department of Land Environment Agriculture and Forestry, University of Padova, Legnaro, Italy.

Lucrezia Unterholzner (L)

Department of Land Environment Agriculture and Forestry, University of Padova, Legnaro, Italy.
Chair of Forest Growth and Woody Biomass Production, TU Dresden, Tharandt, Germany.

Marco Carrer (M)

Department of Land Environment Agriculture and Forestry, University of Padova, Legnaro, Italy.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female

Vancomycin-associated DRESS demonstrates delay in AST abnormalities.

Ahmed Hussein, Kateri L Schoettinger, Jourdan Hydol-Smith et al.
1.00
Humans Drug Hypersensitivity Syndrome Vancomycin Female Male
Humans Immune Checkpoint Inhibitors Lung Neoplasms Prognosis Inflammation
Humans Arthroplasty, Replacement, Hip Male Female Obesity, Morbid

Classifications MeSH