[Individualized precision medicine].
Individualisierte Präzisionsmedizin.
Biomarkers
Cancer
Liquid biopsy
Next generation sequencing
PSMA
Journal
Urologie (Heidelberg, Germany)
ISSN: 2731-7072
Titre abrégé: Urologie
Pays: Germany
ID NLM: 9918384886606676
Informations de publication
Date de publication:
Sep 2023
Sep 2023
Historique:
accepted:
30
06
2023
medline:
28
8
2023
pubmed:
1
8
2023
entrez:
1
8
2023
Statut:
ppublish
Résumé
Spectacular advances have been made in personalized medicine , which has rapidly revolutionized our traditional understanding of disease diagnosis and treatment. Molecular testing of tissue and liquid samples using next generation sequencing has developed into a key technology in this scenario. It can be used for both the determination of biomarkers for diagnostic, prognostic and predictive purposes, as well as the possible improvement of treatment outcome through the use of targeted therapies and the avoidance of therapies in the event of special resistance situations. In addition to drugs that have already been approved, which among other things intervene in cellular DNA repair, many new drugs have been developed and are in clinical testing. Furthermore, new possibilities in molecular imaging have dramatically expanded our understanding of tumor spread and created new approaches for targeted therapies. Die personalisierte Medizin hat sich in einer spektakulären Art und Weise und mit enormer Geschwindigkeit zu einem Themenfeld entwickelt, das unser traditionelles Verständnis von Krankheitsdiagnose und Behandlung revolutioniert hat. Die molekulare Testung von Gewebe- und Flüssigproben mittels „next generation sequencing“ hat sich in diesem Szenario zu einer Schlüsseltechnologie entwickelt. Ihr Einsatz dient dabei sowohl der Bestimmung von Biomarkern für diagnostische, prognostische und prädiktive Zwecke, als auch der möglichen Verbesserung des Behandlungsoutcomes durch den Einsatz zielgerichteter Therapien einerseits und der Vermeidung von Therapien bei Vorliegen spezieller Resistenzsituationen andererseits. Neben bereits zugelassenen Medikamenten, die u. a. in die zelluläre DNA-Reparatur eingreifen, sind viele neue soweit entwickelt, dass sie die klinische Prüfung erreicht haben. Darüber hinaus haben neue Möglichkeiten der molekularen Bildgebung unser Verständnis der Tumorausbreitung bereits heute dramatisch erweitert und neue Ansätze für zielgerichtete Therapien geschaffen.
Autres résumés
Type: Publisher
(ger)
Die personalisierte Medizin hat sich in einer spektakulären Art und Weise und mit enormer Geschwindigkeit zu einem Themenfeld entwickelt, das unser traditionelles Verständnis von Krankheitsdiagnose und Behandlung revolutioniert hat. Die molekulare Testung von Gewebe- und Flüssigproben mittels „next generation sequencing“ hat sich in diesem Szenario zu einer Schlüsseltechnologie entwickelt. Ihr Einsatz dient dabei sowohl der Bestimmung von Biomarkern für diagnostische, prognostische und prädiktive Zwecke, als auch der möglichen Verbesserung des Behandlungsoutcomes durch den Einsatz zielgerichteter Therapien einerseits und der Vermeidung von Therapien bei Vorliegen spezieller Resistenzsituationen andererseits. Neben bereits zugelassenen Medikamenten, die u. a. in die zelluläre DNA-Reparatur eingreifen, sind viele neue soweit entwickelt, dass sie die klinische Prüfung erreicht haben. Darüber hinaus haben neue Möglichkeiten der molekularen Bildgebung unser Verständnis der Tumorausbreitung bereits heute dramatisch erweitert und neue Ansätze für zielgerichtete Therapien geschaffen.
Identifiants
pubmed: 37526710
doi: 10.1007/s00120-023-02151-z
pii: 10.1007/s00120-023-02151-z
doi:
Substances chimiques
Biomarkers, Tumor
0
Types de publication
English Abstract
Journal Article
Review
Langues
ger
Sous-ensembles de citation
IM
Pagination
879-888Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Medizin Verlag GmbH, ein Teil von Springer Nature.
Références
Collins FS, Varmus H (2015) A new initiative on precision medicine. N Engl J Med 372:793–795. https://doi.org/10.1056/NEJMp1500523
doi: 10.1056/NEJMp1500523
pubmed: 25635347
pmcid: 5101938
Yang J, Nittala MR, Velazquez AE et al (2023) An overview of the use of precision population medicine in cancer care: first of a series. Cureus 15:e37889. https://doi.org/10.7759/cureus.37889
doi: 10.7759/cureus.37889
pubmed: 37113463
pmcid: 10129036
Di Meo A, Bartlett J, Cheng Y et al (2017) Liquid biopsy: a step forward towards precision medicine in urologic malignancies. Mol Cancer 16:80. https://doi.org/10.1186/s12943-017-0644-5
doi: 10.1186/s12943-017-0644-5
pubmed: 28410618
pmcid: 5391592
Connal S, Cameron JM, Sala A et al (2023) Liquid biopsies: the future of cancer early detection. J Transl Med 21:118. https://doi.org/10.1186/s12967-023-03960-8
doi: 10.1186/s12967-023-03960-8
pubmed: 36774504
pmcid: 9922467
Lieb V, Abdulrahman A, Weigelt K et al (2021) Cell-free DNA variant sequencing using plasma and AR-V7 testing of circulating tumor cells in prostate cancer patients. Cells. https://doi.org/10.3390/cells10113223
doi: 10.3390/cells10113223
pubmed: 34831445
pmcid: 8620951
Casanova-Salas I, Athie A, Boutros PC et al (2021) Quantitative and qualitative analysis of blood-based liquid biopsies to inform clinical decision-making in prostate cancer. Eur Urol 79:762–771. https://doi.org/10.1016/j.eururo.2020.12.037
doi: 10.1016/j.eururo.2020.12.037
pubmed: 33422353
pmcid: 8941682
Dieckmann KP, Radtke A, Geczi L et al (2019) Serum levels of MicroRNA-371a-3p (M371 test) as a new biomarker of testicular germ cell tumors: results of a prospective multicentric study. J Clin Oncol 37:1412–1423. https://doi.org/10.1200/JCO.18.01480
doi: 10.1200/JCO.18.01480
pubmed: 30875280
pmcid: 6544462
Scher HI, Lu D, Schreiber NA et al (2016) Association of AR-V7 on circulating tumor cells as a treatment-specific biomarker with outcomes and survival in castration-resistant prostate cancer. JAMA Oncol 2:1441–1449. https://doi.org/10.1001/jamaoncol.2016.1828
doi: 10.1001/jamaoncol.2016.1828
pubmed: 27262168
pmcid: 5206761
de Bono JS, Scher HI, Montgomery RB et al (2008) Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res 14:6302–6309. https://doi.org/10.1158/1078-0432.CCR-08-0872
doi: 10.1158/1078-0432.CCR-08-0872
pubmed: 18829513
Miller RW, Hutchcraft ML, Weiss HL et al (2022) Molecular tumor board-assisted care in an advanced cancer population: results of a phase II clinical trial. JCO Precis Oncol 6:e2100524. https://doi.org/10.1200/PO.21.00524
doi: 10.1200/PO.21.00524
pubmed: 36103643
pmcid: 9489195
Eibl RH, Schneemann M (2022) Cell-free DNA as a biomarker in cancer. Extracell Vesicles Circ Nucleic Acids 3:178–198. https://doi.org/10.20517/evcna.2022.20
doi: 10.20517/evcna.2022.20
Wang Z, Duan J, Cai S et al (2019) Assessment of blood tumor mutational burden as a potential biomarker for immunotherapy in patients with non-small cell lung cancer with use of a next-generation sequencing cancer gene panel. JAMA Oncol 5:696–702. https://doi.org/10.1001/jamaoncol.2018.7098
doi: 10.1001/jamaoncol.2018.7098
pubmed: 30816954
pmcid: 6512308
Kato S, Weipert C, Gumas S et al (2021) Therapeutic actionability of circulating cell-free DNA alterations in carcinoma of unknown primary. JCO Precis Oncol. https://doi.org/10.1200/PO.21.00011
doi: 10.1200/PO.21.00011
pubmed: 34994628
pmcid: 8585281
Uhr A, Glick L, Gomella LG (2020) An overview of biomarkers in the diagnosis and management of prostate cancer. Can J Urol 27:24–27
pubmed: 32875999
Yu D, Li Y, Wang M et al (2022) Exosomes as a new frontier of cancer liquid biopsy. Mol Cancer 21:56. https://doi.org/10.1186/s12943-022-01509-9
doi: 10.1186/s12943-022-01509-9
pubmed: 35180868
pmcid: 8855550
Colombo M, Raposo G, Thery C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289. https://doi.org/10.1146/annurev-cellbio-101512-122326
doi: 10.1146/annurev-cellbio-101512-122326
pubmed: 25288114
Lee JH, Dindorf J, Eberhardt M et al (2019) Innate extracellular vesicles from melanoma patients suppress beta-catenin in tumor cells by miRNA-34a. Life Sci Alliance. https://doi.org/10.26508/lsa.201800205
doi: 10.26508/lsa.201800205
pubmed: 31879337
pmcid: 6932742
Zhao Y, Oreskovic E, Zhang Q et al (2021) Transposon-triggered innate immune response confers cancer resistance to the blind mole rat. Nat Immunol 22:1219–1230. https://doi.org/10.1038/s41590-021-01027-8
doi: 10.1038/s41590-021-01027-8
pubmed: 34556881
pmcid: 8488014
Lee JH, Wittki S, Brau T et al (2013) HIV Nef, paxillin, and Pak1/2 regulate activation and secretion of TACE/ADAM10 proteases. Mol Cell 49:668–679. https://doi.org/10.1016/j.molcel.2012.12.004
doi: 10.1016/j.molcel.2012.12.004
pubmed: 23317503
Lee JH, Ostalecki C, Oberstein T et al (2022) Alzheimer’s disease protease-containing plasma extracellular vesicles transfer to the hippocampus via the choroid plexus. eBioMedicine 77:103903. https://doi.org/10.1016/j.ebiom.2022.103903
doi: 10.1016/j.ebiom.2022.103903
pubmed: 35220044
pmcid: 8889140
Parpart-Li S, Bartlett B, Popoli M et al (2017) The effect of preservative and temperature on the analysis of circulating tumor DNA. Clin Cancer Res 23:2471–2477. https://doi.org/10.1158/1078-0432.CCR-16-1691
doi: 10.1158/1078-0432.CCR-16-1691
pubmed: 27827317
Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. https://doi.org/10.1016/j.cell.2011.02.013
doi: 10.1016/j.cell.2011.02.013
pubmed: 21376230
Tubbs A, Nussenzweig A (2017) Endogenous DNA damage as a source of genomic instability in cancer. Cell 168:644–656. https://doi.org/10.1016/j.cell.2017.01.002
doi: 10.1016/j.cell.2017.01.002
pubmed: 28187286
pmcid: 6591730
Pritchard CC, Mateo J, Walsh MF et al (2016) Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N Engl J Med 375:443–453. https://doi.org/10.1056/NEJMoa1603144
doi: 10.1056/NEJMoa1603144
pubmed: 27433846
pmcid: 4986616
Robinson D, Van Allen EM, Wu YM et al (2015) Integrative clinical genomics of advanced prostate cancer. Cell 161:1215–1228. https://doi.org/10.1016/j.cell.2015.05.001
doi: 10.1016/j.cell.2015.05.001
pubmed: 26000489
pmcid: 4484602
Fong PC, Boss DS, Yap TA et al (2009) Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 361:123–134. https://doi.org/10.1056/NEJMoa0900212
doi: 10.1056/NEJMoa0900212
pubmed: 19553641
de Bono J, Mateo J, Fizazi K et al (2020) Olaparib for metastatic castration-resistant prostate cancer. N Engl J Med 382:2091–2102. https://doi.org/10.1056/NEJMoa1911440
doi: 10.1056/NEJMoa1911440
pubmed: 32343890
Ryan CJ, Abida W, Bryce AH et al (2018) TRITON3: an international, randomized, open-label, phase III study of the PARP inhibitor rucaparib vs. physician’s choice of therapy for patients with metastatic castration-resistant prostate cancer (mCRPC) associated with homologous recombination deficiency (HRD). J Clin Oncol. https://doi.org/10.1200/JCO.2018.36.6_suppl.TPS389
doi: 10.1200/JCO.2018.36.6_suppl.TPS389
pubmed: 30024784
pmcid: 6127025
de Bono JS, Mehra N, Scagliotti GV et al (2021) Talazoparib monotherapy in metastatic castration-resistant prostate cancer with DNA repair alterations (TALAPRO-1): an open-label, phase 2 trial. Lancet Oncol 22:1250–1264. https://doi.org/10.1016/S1470-2045(21)00376-4
doi: 10.1016/S1470-2045(21)00376-4
pubmed: 34388386
Chi KN, Rathkopf D, Smith MR et al (2023) Niraparib and abiraterone acetate for metastatic castration-resistant prostate cancer. J Clin Oncol. https://doi.org/10.1200/JCO.22.01649
doi: 10.1200/JCO.22.01649
pubmed: 37040594
pmcid: 10431499
Clarke NW, Armstrong AJ, Thiery-Vuillemin A et al (2022) Abiraterone and olaparib for metastatic castration-resistant prostate cancer. NEJM Evid. https://doi.org/10.1056/EVIDoa2200043
doi: 10.1056/EVIDoa2200043
Farmer H, Mccabe N, Lord CJ et al (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434:917–921. https://doi.org/10.1038/nature03445
doi: 10.1038/nature03445
pubmed: 15829967
Lord CJ, Ashworth A (2017) PARP inhibitors: synthetic lethality in the clinic. Science 355:1152–1158. https://doi.org/10.1126/science.aam7344
doi: 10.1126/science.aam7344
pubmed: 28302823
pmcid: 6175050
Iglehart JD, Silver DP (2009) Synthetic lethality—a new direction in cancer-drug development. N Engl J Med 361:189–191. https://doi.org/10.1056/NEJMe0903044
doi: 10.1056/NEJMe0903044
pubmed: 19553640
Murai J, Huang SY, Das BB et al (2012) Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res 72:5588–5599. https://doi.org/10.1158/0008-5472.CAN-12-2753
doi: 10.1158/0008-5472.CAN-12-2753
pubmed: 23118055
pmcid: 3528345
Pommier Y, O’connor MJ, de Bono J (2016) Laying a trap to kill cancer cells: PARP inhibitors and their mechanisms of action. Sci Transl Med 8:362ps17. https://doi.org/10.1126/scitranslmed.aaf9246
doi: 10.1126/scitranslmed.aaf9246
pubmed: 27797957
Rundle S, Bradbury A, Drew Y et al (2017) Targeting the ATR-CHK1 axis in cancer therapy. Cancers (Basel). https://doi.org/10.3390/cancers9050041
doi: 10.3390/cancers9050041
pubmed: 28448462
Durant ST, Zheng L, Wang Y et al (2018) The brain-penetrant clinical ATM inhibitor AZD1390 radiosensitizes and improves survival of preclinical brain tumor models. Sci Adv 4:eaat1719. https://doi.org/10.1126/sciadv.aat1719
doi: 10.1126/sciadv.aat1719
pubmed: 29938225
pmcid: 6010333
Aarts M, Sharpe R, Garcia-Murillas I et al (2012) Forced mitotic entry of S‑phase cells as a therapeutic strategy induced by inhibition of WEE1. Cancer Discov 2:524–539. https://doi.org/10.1158/2159-8290.CD-11-0320
doi: 10.1158/2159-8290.CD-11-0320
pubmed: 22628408
Ellis PM, Leighl NB, Hirsh V et al (2015) A randomized, open-label phase II trial of volasertib as monotherapy and in combination with standard-dose pemetrexed compared with pemetrexed monotherapy in second-line treatment for non-small-cell lung cancer. Clin Lung Cancer 16:457–465. https://doi.org/10.1016/j.cllc.2015.05.010
doi: 10.1016/j.cllc.2015.05.010
pubmed: 26100229
Zeidan AM, Ridinger M, Lin TL et al (2020) A phase Ib study of onvansertib, a novel oral PLK1 inhibitor, in combination therapy for patients with relapsed or refractory acute myeloid leukemia. Clin Cancer Res 26:6132–6140. https://doi.org/10.1158/1078-0432.CCR-20-2586
doi: 10.1158/1078-0432.CCR-20-2586
pubmed: 32998961
Dominguez-Valentin M, Joost P, Therkildsen C et al (2016) Frequent mismatch-repair defects link prostate cancer to Lynch syndrome. BMC Urol 16:15. https://doi.org/10.1186/s12894-016-0130-1
doi: 10.1186/s12894-016-0130-1
pubmed: 27013479
pmcid: 4806412
Raymond VM, Mukherjee B, Wang F et al (2013) Elevated risk of prostate cancer among men with Lynch syndrome. J Clin Oncol 31:1713–1718. https://doi.org/10.1200/JCO.2012.44.1238
doi: 10.1200/JCO.2012.44.1238
pubmed: 23530095
pmcid: 3641694
Le DT, Durham JN, Smith KN et al (2017) Mismatch repair deficiency predicts response of solid tumors to PD‑1 blockade. Science 357:409–413. https://doi.org/10.1126/science.aan6733
doi: 10.1126/science.aan6733
pubmed: 28596308
pmcid: 5576142
Afshar-Oromieh A, Malcher A, Eder M et al (2013) PET imaging with a [68Ga]gallium-labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions. Eur J Nucl Med Mol Imaging 40:486–495. https://doi.org/10.1007/s00259-012-2298-2
doi: 10.1007/s00259-012-2298-2
pubmed: 23179945
Afshar-Oromieh A, Zechmann CM, Malcher A et al (2014) Comparison of PET imaging with a (68)Ga-labelled PSMA ligand and (18)F-choline-based PET/CT for the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging 41:11–20. https://doi.org/10.1007/s00259-013-2525-5
doi: 10.1007/s00259-013-2525-5
pubmed: 24072344
Fendler WP, Eiber M, Beheshti M et al (2023) PSMA PET/CT: joint EANM procedure guideline/SNMMI procedure standard for prostate cancer imaging 2.0. Eur J Nucl Med Mol Imaging 50:1466–1486. https://doi.org/10.1007/s00259-022-06089-w
doi: 10.1007/s00259-022-06089-w
pubmed: 36604326
pmcid: 10027805
Hofman MS, Lawrentschuk N, Francis RJ et al (2020) Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. Lancet 395:1208–1216. https://doi.org/10.1016/S0140-6736(20)30314-7
doi: 10.1016/S0140-6736(20)30314-7
pubmed: 32209449
Hope TA, Eiber M, Armstrong WR et al (2021) Diagnostic accuracy of 68ga-PSMA-11 PET for pelvic nodal metastasis detection prior to radical prostatectomy and pelvic lymph node dissection: a multicenter prospective phase 3 imaging trial. JAMA Oncol 7:1635–1642. https://doi.org/10.1001/jamaoncol.2021.3771
doi: 10.1001/jamaoncol.2021.3771
pubmed: 34529005
pmcid: 8446902
Pienta KJ, Gorin MA, Rowe SP et al (2021) A phase 2/3 prospective multicenter study of the diagnostic accuracy of prostate specific membrane antigen PET/CT with (18)F-DCFPyL in prostate cancer patients (OSPREY). J Urol 206:52–61. https://doi.org/10.1097/JU.0000000000001698
doi: 10.1097/JU.0000000000001698
pubmed: 33634707
pmcid: 8556578
Phillips R, Shi WY, Deek M et al (2020) Outcomes of observation vs stereotactic ablative radiation for oligometastatic prostate cancer: the ORIOLE phase 2 randomized clinical trial. JAMA Oncol 6:650–659. https://doi.org/10.1001/jamaoncol.2020.0147
doi: 10.1001/jamaoncol.2020.0147
pubmed: 32215577
pmcid: 7225913
Fendler WP, Weber M, Iravani A et al (2019) Prostate-specific membrane antigen ligand positron emission tomography in men with nonmetastatic castration-resistant prostate cancer. Clin Cancer Res 25:7448–7454. https://doi.org/10.1158/1078-0432.CCR-19-1050
doi: 10.1158/1078-0432.CCR-19-1050
pubmed: 31511295
Kratochwil C, Fendler WP, Eiber M et al (2019) EANM procedure guidelines for radionuclide therapy with (177)Lu-labelled PSMA-ligands ((177)Lu-PSMA-RLT). Eur J Nucl Med Mol Imaging 46:2536–2544. https://doi.org/10.1007/s00259-019-04485-3
doi: 10.1007/s00259-019-04485-3
pubmed: 31440799
Hofman MS, Violet J, Hicks RJ et al (2018) [(177)Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol 19:825–833. https://doi.org/10.1016/S1470-2045(18)30198-0
doi: 10.1016/S1470-2045(18)30198-0
pubmed: 29752180
Afshar-Oromieh A, Hetzheim H, Kratochwil C et al (2015) The theranostic PSMA Ligand PSMA-617 in the diagnosis of prostate cancer by PET/CT: biodistribution in humans, radiation dosimetry, and first evaluation of tumor lesions. J Nucl Med 56:1697–1705. https://doi.org/10.2967/jnumed.115.161299
doi: 10.2967/jnumed.115.161299
pubmed: 26294298
Ahmadzadehfar H, Rahbar K, Kurpig S et al (2015) Early side effects and first results of radioligand therapy with (177)Lu-DKFZ-617 PSMA of castrate-resistant metastatic prostate cancer: a two-centre study. EJNMMI Res 5:114. https://doi.org/10.1186/s13550-015-0114-2
doi: 10.1186/s13550-015-0114-2
pubmed: 26099227
Rahbar K, Ahmadzadehfar H, Kratochwil C et al (2017) German multicenter study investigating 177Lu-PSMA-617 radioligand therapy in advanced prostate cancer patients. J Nucl Med 58:85–90. https://doi.org/10.2967/jnumed.116.183194
doi: 10.2967/jnumed.116.183194
pubmed: 27765862
Hofman MS, Emmett L, Sandhu S et al (2021) [(177)Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): a randomised, open-label, phase 2 trial. Lancet 397:797–804. https://doi.org/10.1016/S0140-6736(21)00237-3
doi: 10.1016/S0140-6736(21)00237-3
pubmed: 33581798
Jang A, Kendi AT, Sartor O (2023) Status of PSMA-targeted radioligand therapy in prostate cancer: current data and future trials. Ther Adv Med Oncol 15:17588359231157632. https://doi.org/10.1177/17588359231157632
doi: 10.1177/17588359231157632
pubmed: 36895851
pmcid: 9989419
Ramnaraign B, Sartor O (2023) PSMA-targeted radiopharmaceuticals in prostate cancer: current data and new trials. Oncologist 28:392–401. https://doi.org/10.1093/oncolo/oyac279
doi: 10.1093/oncolo/oyac279
pubmed: 36806966
pmcid: 10166155
Wang S, Gao D, Chen Y (2017) The potential of organoids in urological cancer research. Nat Rev Urol 14:401–414. https://doi.org/10.1038/nrurol.2017.65
doi: 10.1038/nrurol.2017.65
pubmed: 28534535
pmcid: 5558053
Lee SH, Hu W, Matulay JT et al (2018) Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell 173:515–528.e17. https://doi.org/10.1016/j.cell.2018.03.017
doi: 10.1016/j.cell.2018.03.017
pubmed: 29625057
pmcid: 5890941
Drost J, Karthaus WR, Gao D et al (2016) Organoid culture systems for prostate epithelial and cancer tissue. Nat Protoc 11:347–358. https://doi.org/10.1038/nprot.2016.006
doi: 10.1038/nprot.2016.006
pubmed: 26797458
pmcid: 4793718
Minoli M, Cantore T, Hanhart D et al (2023) Bladder cancer organoids as a functional system to model different disease stages and therapy response. Nat Commun 14:2214. https://doi.org/10.1038/s41467-023-37696-2
doi: 10.1038/s41467-023-37696-2
pubmed: 37072390
pmcid: 10113240