Possible role of LCZ696 in atherosclerosis: new inroads and perspective.

Atherosclerosis Cytokines LCZ696 Pro-inflammatory

Journal

Molecular and cellular biochemistry
ISSN: 1573-4919
Titre abrégé: Mol Cell Biochem
Pays: Netherlands
ID NLM: 0364456

Informations de publication

Date de publication:
01 Aug 2023
Historique:
received: 14 04 2023
accepted: 15 07 2023
medline: 1 8 2023
pubmed: 1 8 2023
entrez: 1 8 2023
Statut: aheadofprint

Résumé

LCZ696 blocks both angiotensin receptor type 1 (ATR1) and neprilysin (NEP), which are intricate in the degradation of natriuretic peptides (NPs) and other endogenous peptides. It has been shown NEP inhibitors and LCZ696 could be effectively in the management of atherosclerosis (AS). However, the underlying mechanism of LCZ696 in AS is needed to be clarified entirely. Hence, this review is directed to reconnoiter the mechanistic role of LCZ696 in AS. The anti-inflammatory role of LCZ696 is related to the inhibition of transforming growth factor beta (TGF-β)-activated kinase 1 (TAK) and nod-like receptor pyrin 3 receptor (NLRP3) inflammasome. Moreover, LCZ696, via inhibition of pro-inflammatory cytokines, oxidative stress, apoptosis and endothelial dysfunction can attenuate the development and progression of AS. In conclusion, LCZ696 could be effective in the management of AS through modulation of inflammatory and oxidative signaling. Preclinical and clinical studies are recommended in this regard.

Identifiants

pubmed: 37526794
doi: 10.1007/s11010-023-04816-x
pii: 10.1007/s11010-023-04816-x
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Nalivaeva NN, Zhuravin IA, Turner AJ (2020) Neprilysin expression and functions in development, ageing and disease. Mech Ageing Dev 1(192):111363
doi: 10.1016/j.mad.2020.111363
Wang Y, Zhou R, Lu C, Chen Q, Xu T, Li D (2019) Effects of the angiotensin-receptor neprilysin inhibitor on cardiac reverse remodeling: meta-analysis. J Am Heart Assoc 8(13):e012272
pubmed: 31240976 pmcid: 6662364 doi: 10.1161/JAHA.119.012272
Solomon SD, McMurray JJ, Anand IS, Ge J, Lam CS, Maggioni AP, Martinez F, Packer M, Pfeffer MA, Pieske B, Redfield MM (2019) Angiotensin–neprilysin inhibition in heart failure with preserved ejection fraction. N Engl J Med 381(17):1609–1620
pubmed: 31475794 doi: 10.1056/NEJMoa1908655
Pardossi-Piquard R, Dunys J, Yu G, StGeorge-Hyslop P, Alves da Costa C, Checler F (2006) Neprilysin activity and expression are controlled by nicastrin. J Neurochem 97(4):1052–6
pubmed: 16606360 doi: 10.1111/j.1471-4159.2006.03822.x
Bayes-Genis A, Prickett TC, Richards AM, Barallat J, Lupón J (2016) Soluble neprilysin retains catalytic activity in heart failure. J Heart Lung Transplant 35(5):684–685
pubmed: 26830756 doi: 10.1016/j.healun.2015.12.015
Bayés-Genís A, Barallat J, Galán A, De Antonio M, Domingo M, Zamora E, Urrutia A, Lupón J (2015) Soluble neprilysin is predictive of cardiovascular death and heart failure hospitalization in heart failure patients. J Am Coll Cardiol 65(7):657–665
pubmed: 25677426 doi: 10.1016/j.jacc.2014.11.048
Goliasch G, Pavo N, Zotter-Tufaro C, Kammerlander A, Duca F, Mascherbauer J, Bonderman D (2016) Soluble neprilysin does not correlate with outcome in heart failure with preserved ejection fraction. Eur J Heart Fail 18(1):89–93
pubmed: 26725876 doi: 10.1002/ejhf.435
Vodovar N, Seronde MF, Laribi S, Gayat E, Lassus J, Januzzi JL, Boukef R, Nouira S, Manivet P, Samuel JL, Logeart D (2015) Elevated plasma B-type natriuretic peptide concentrations directly inhibit circulating neprilysin activity in heart failure. JACC 3(8):629–36
pubmed: 26251090
Mishra D, Singh S, Narayan G (2016) Role of B cell development marker CD10 in cancer progression and prognosis. Mol Biol Int. https://doi.org/10.1155/2016/4328697
doi: 10.1155/2016/4328697 pubmed: 27965895 pmcid: 5124668
Reynaud D, Lefort N, Manie E, Coulombel L, Levy Y (2003) In vitro identification of human pro-B cells that give rise to macrophages, natural killer cells, and T cells. Blood 101(11):4313–4321
pubmed: 12560235 doi: 10.1182/blood-2002-07-2085
Visco C, Li Y, Xu-Monette ZY, Miranda RN, Green TM, Tzankov A, Wen W, Liu WM, Kahl BS, d’Amore ES, Montes-Moreno S (2012) Comprehensive gene expression profiling and immunohistochemical studies support application of immunophenotypic algorithm for molecular subtype classification in diffuse large B-cell lymphoma: a report from the International DLBCL Rituximab-CHOP Consortium Program Study. Leukemia 26(9):2103–2113
pubmed: 22437443 pmcid: 3637886 doi: 10.1038/leu.2012.83
Revuelta-López E, Núñez J, Gastelurrutia P, Cediel G, Januzzi JL, Ibrahim NE, Emdin M, VanKimmenade R, Pascual-Figal D, Núñez E, Gommans F (2020) Neprilysin inhibition, endorphin dynamics, and early symptomatic improvement in heart failure: a pilot study. ESC Heart Fail 7(2):559–566
pubmed: 32045114 pmcid: 7160502 doi: 10.1002/ehf2.12607
Libby P (2021) The changing landscape of atherosclerosis. Nature 592(7855):524–533
pubmed: 33883728 doi: 10.1038/s41586-021-03392-8
Fok PW, Lanzer P (2018) Media sclerosis drives and localizes atherosclerosis in peripheral arteries. PLoS One 13(10):e0205599
pubmed: 30365531 pmcid: 6203409 doi: 10.1371/journal.pone.0205599
Roh JW, Kwon BJ, Ihm SH, Lim S, Park CS, Chang K, Chung WS, Kim DB, Kim SR, Kim HY (2019) Predictors of significant coronary artery disease in patients with cerebral artery atherosclerosis. Cerebrovasc Dis 48(3–6):226–235
pubmed: 31825937 doi: 10.1159/000504927
Lovshin JA, Bjornstad P, Lovblom LE, Bai JW, Lytvyn Y, Boulet G, Farooqi MA, Santiago S, Orszag A, Scarr D, Weisman A (2018) Atherosclerosis and microvascular complications: results from the canadian study of longevity in type 1 diabetes. Diabetes Care 41(12):2570–2578
pubmed: 30275283 pmcid: 6245210 doi: 10.2337/dc18-1236
Schipper HS, de Ferranti S (2022) Atherosclerotic cardiovascular risk as an emerging priority in pediatrics. Pediatrics. https://doi.org/10.1542/peds.2022-057956
doi: 10.1542/peds.2022-057956 pubmed: 36321395
Vergallo R, Crea F (2020) Atherosclerotic plaque healing. N Engl J Med 383(9):846–857
pubmed: 32846063 doi: 10.1056/NEJMra2000317
Shi P, Ji H, Zhang H, Yang J, Guo R, Wang J (2020) circANRIL reduces vascular endothelial injury, oxidative stress and inflammation in rats with coronary atherosclerosis. Exp Ther Med 20(3):2245–2251
pubmed: 32765701 pmcid: 7401493
Khosravi M, Poursaleh A, Ghasempour G, Farhad S, Najafi M (2019) The effects of oxidative stress on the development of atherosclerosis. Biol Chem 400(6):711–732
pubmed: 30864421 doi: 10.1515/hsz-2018-0397
Oliveira HC, Vercesi AE (2020) Mitochondrial bioenergetics and redox dysfunctions in hypercholesterolemia and atherosclerosis. Mol Aspects Med 1(71):100840
doi: 10.1016/j.mam.2019.100840
Hartley A, Haskard D, Khamis R (2019) Oxidized LDL and anti-oxidized LDL antibodies in atherosclerosis–Novel insights and future directions in diagnosis and therapy. Trends Cardiovasc Med 29(1):22–26
pubmed: 29934015 doi: 10.1016/j.tcm.2018.05.010
Khatana C, Saini NK, Chakrabarti S, Saini V, Sharma A, Saini RV, Saini AK (2020) Mechanistic insights into the oxidized low-density lipoprotein-induced atherosclerosis. Oxid Med Cell Longev 15:2020
Jinnouchi H, Sato Y, Sakamoto A, Cornelissen A, Mori M, Kawakami R, Gadhoke NV, Kolodgie FD, Virmani R, Finn AV (2020) Calcium deposition within coronary atherosclerotic lesion: Implications for plaque stability. Atherosclerosis 1(306):85–95
doi: 10.1016/j.atherosclerosis.2020.05.017
Ito F, Ito T (2020) High-density lipoprotein (Hdl) triglyceride and oxidized HDL: new lipid biomarkers of lipoprotein-related atherosclerotic cardiovascular disease. Antioxidants 9(5):362
pubmed: 32357465 pmcid: 7278571 doi: 10.3390/antiox9050362
Gill PK, Dron JS, Hegele RA (2021) Genetics of hypertriglyceridemia and atherosclerosis. Curr Opin Cardiol 36(3):264–271
pubmed: 33818545 doi: 10.1097/HCO.0000000000000839
Hegele RA, Borén J, Ginsberg HN, Arca M, Averna M, Binder CJ, Calabresi L, Chapman MJ, Cuchel M, von Eckardstein A, Frikke-Schmidt R (2020) Rare dyslipidaemias, from phenotype to genotype to management: a European atherosclerosis society task force consensus statement. Lancet Diabetes Endocrinol 8(1):50–67
pubmed: 31582260 doi: 10.1016/S2213-8587(19)30264-5
Jinnouchi H, Guo L, Sakamoto A, Torii S, Sato Y, Cornelissen A, Kuntz S, Paek KH, Fernandez R, Fuller D, Gadhoke N (2020) Diversity of macrophage phenotypes and responses in atherosclerosis. Cell Mol Life Sci 77(10):1919–1932
pubmed: 31720740 doi: 10.1007/s00018-019-03371-3
Poznyak AV, Grechko AV, Orekhova VA, Chegodaev YS, Wu WK, Orekhov AN (2020) Oxidative stress and antioxidants in atherosclerosis development and treatment. Biology 9(3):60
pubmed: 32245238 pmcid: 7150948 doi: 10.3390/biology9030060
Ho F, Watson A, Elbatreek MH, Kleikers PW, Khan W, Sourris KC, Dai A, Jha J, Schmidt HH, Jandeleit-Dahm KA (2022) Endothelial reactive oxygen-forming NADPH oxidase 5 is a possible player in diabetic aortic aneurysm but not atherosclerosis. Sci Rep 12(1):1
doi: 10.1038/s41598-022-15706-5
Pejenaute Á, Cortés A, Marqués J, Montero L, Beloqui Ó, Fortuño A, Martí A, Orbe J, Zalba G (2020) NADPH oxidase overactivity underlies telomere shortening in human atherosclerosis. Int J Mol Sci 21(4):1434
pubmed: 32093292 pmcid: 7073034 doi: 10.3390/ijms21041434
Ye Z, Guo H, Wang L, Li Y, Xu M, Zhao X, Song X, Chen Z, Huang R (2022) GALNT4 primes monocytes adhesion and transmigration by regulating O-Glycosylation of PSGL-1 in atherosclerosis. J Mol Cell Cardiol 1(165):54–63
doi: 10.1016/j.yjmcc.2021.12.012
Wang C, Wang H, Zhao Z, Xiao S, Zhao Y, Duan C, Gao L, Li S, Wang J (2019) Pediococcus acidilactici AS185 attenuates early atherosclerosis development through inhibition of lipid regulation and inflammation in rats. J Funct Foods 1(60):103424
doi: 10.1016/j.jff.2019.103424
He D, Zhao M, Wu C, Zhang W, Niu C, Yu B, Jin J, Ji L, Willard B, Mathew AV, Chen YE (2018) Apolipoprotein A-1 mimetic peptide 4F promotes endothelial repairing and compromises reendothelialization impaired by oxidized HDL through SR-B1. Redox Biol 1(15):228–242
doi: 10.1016/j.redox.2017.11.027
Zhang H, Liu G, Zhou W, Zhang W, Wang K, Zhang J (2019) Neprilysin inhibitor–angiotensin II receptor blocker combination therapy (sacubitril/valsartan) suppresses atherosclerotic plaque formation and inhibits inflammation in apolipoprotein E-deficient Mice. Sci Rep 9(1):1–7
Suematsu Y, Ideishi A, Tashiro K, Miura SI (2021) Angiotensin receptor-neprilysin inhibitor suppressed cardiac dysfunction by angiogenesis in mice model of atherosclerosis. J Hypertens 1(39):e191
doi: 10.1097/01.hjh.0000746572.65667.fd
Chua SK, Lai WT, Chen LC, Hung HF (2021) The antihypertensive effects and safety of LCZ696 in patients with hypertension: a systemic review and meta-analysis of randomized controlled trials. J Clin Med 10(13):2824
pubmed: 34206864 pmcid: 8268164 doi: 10.3390/jcm10132824
Ibrahim NE, McCarthy CP, Shrestha S, Gaggin HK, Mukai R, Szymonifka J, Apple FS, Burnett JC, Iyer S, Januzzi JL (2019) Effect of neprilysin inhibition on various natriuretic peptide assays. J Am Coll Cardiol 73(11):1273–1284
pubmed: 30898202 doi: 10.1016/j.jacc.2018.12.063
Vodovar N, Seronde MF, Laribi S, GREAT Network et al (2015) Elevated plasma B-type natriuretic peptide concentrations directly inhibit circulating neprilysin activity in heart failure. JACC Heart Fail 3(8):629–636
pubmed: 26251090 doi: 10.1016/j.jchf.2015.03.011
Cleland JG, Swedberg K (1998) Lack of efficacy of neutral endopeptidase inhibitor ecadotril in heart failure. The international ecadotril multi-centre dose-ranging study investigators. Lancet 351(9116):1657–1658
pubmed: 9620738 doi: 10.1016/S0140-6736(05)77712-6
Cleland JG, Swedberg K (1998) Lack of efficacy of neutral endopeptidase inhibitor ecadotril in heart failure. The Lancet 351(9116):1657–1658
doi: 10.1016/S0140-6736(05)77712-6
Voors AA, Gori M, Liu LC, Claggett B, Zile MR, Pieske B, McMurray JJ, Packer M, Shi V, Lefkowitz MP, Solomon SD (2015) Renal effects of the angiotensin receptor neprilysin inhibitor LCZ696 in patients with heart failure and preserved ejection fraction. Eur J Heart Fail 17(5):510–517
pubmed: 25657064 doi: 10.1002/ejhf.232
Judge P, Haynes R, Landray MJ, Baigent C (2015) Neprilysin inhibition in chronic kidney disease. Nephrol Dial Transplant 30(5):738–743
pubmed: 25140014 doi: 10.1093/ndt/gfu269
Lillyblad MP (2015) Dual angiotensin receptor and neprilysin inhibition with sacubitril/valsartan in chronic systolic heart failure: understanding the new PARADIGM. Ann Pharmacother 49(11):1237–1251
pubmed: 26175499 doi: 10.1177/1060028015593093
Chen Y, He Q, Mo DC, Chen L, Lu JL, Li RX, Huang J (2022) The angiotensin receptor and neprilysin inhibitor, LCZ696, in heart failure: a meta-analysis of randomized controlled trials. Medicine 101(41):e30904
pubmed: 36254034 pmcid: 9575833 doi: 10.1097/MD.0000000000030904
Shi V, Senni M, Streefkerk H, Modgill V, Zhou W, Kaplan A (2018) Angioedema in heart failure patients treated with sacubitril/valsartan (LCZ696) or enalapril in the PARADIGM-HF study. Int J Cardiol 1(264):118–123
doi: 10.1016/j.ijcard.2018.03.121
Menendez JT (2016) The mechanism of action of LCZ696. Card Fail Rev 2(1):40
pubmed: 28785451 pmcid: 5491035 doi: 10.15420/cfr.2016:1:1
Gu J, Noe A, Chandra P, Al-Fayoumi S, Ligueros-Saylan M, Sarangapani R, Maahs S, Ksander G, Rigel DF, Jeng AY, Lin TH (2010) Pharmacokinetics and pharmacodynamics of LCZ696, a novel dual-acting angiotensin receptor—neprilysin inhibitor (ARNi). J Clin Pharmacol 50(4):401–414
pubmed: 19934029 doi: 10.1177/0091270009343932
Packer M, McMurray JJ, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, Rouleau JL, Shi VC, Solomon SD, Swedberg K, Zile M (2015) Angiotensin receptor neprilysin inhibition compared with enalapril on the risk of clinical progression in surviving patients with heart failure. Circulation 131(1):54–61
pubmed: 25403646 doi: 10.1161/CIRCULATIONAHA.114.013748
Langenickel TH, Dole WP (2012) Angiotensin receptor-neprilysin inhibition with LCZ696: a novel approach for the treatment of heart failure. Drug Discov Today 9(4):e131–e139
Kobalava ZD, Pavlikova EP, Averkov OA, Merai I, Babaeva LA, Amirbegishvili IA, Kotovskaya YV, Moiseev VS (2015) First Experience of clinical application of LCZ696 an AT1-angiotensin receptors and neprilysin inhibitor in patients with chronic heart failure and reduced ejection fraction. Kardiologiia 55(7):14–25
pubmed: 26688921 doi: 10.18565/cardio.2015.7.14-25
Sutanto H, Dobrev D, Heijman J (2021) Angiotensin receptor-neprilysin inhibitor (ARNI) and cardiac arrhythmias. Int J Mol Sci 22(16):8994
pubmed: 34445698 pmcid: 8396594 doi: 10.3390/ijms22168994
Nikolic M, Srejovic I, Jovic J, Sretenovic J, Jeremic J, Cekerevac I, Simovic S, Djokovic D, Muric N, Stojic V, Bolevich SS. (2022) Sacubitril/valsartan in Heart Failure and Beyond—From Molecular Mechanisms to Clinical Relevance. Reviews in Cardiovascular Medicine.
Valentim Goncalves A, Pereira-da-Silva T, Galrinho A, Rio P, Moura Branco L, Soares R, Ilhao Moreira R et al (2020) C-reactive protein reduction with sacubitril-valsartan treatment in heart failure patients. Am J Cardiovasc Dis 10:174–181
pubmed: 32923098 pmcid: 7486532
Ge Q, Zhao L, Ren XM, Ye P, Hu ZY (2019) LCZ696, an angiotensin receptor-neprilysin inhibitor, ameliorates diabetic cardiomyopathy by inhibiting inflammation, oxidative stress and apoptosis. Expe Biol Med 244:1028–1039
doi: 10.1177/1535370219861283
Butts B, Gary RA, Dunbar SB, Butler J (2015) The importance of NLRP3 inflammasome in heart failure. J Card Fail 21:586–593
pubmed: 25982825 pmcid: 4516025 doi: 10.1016/j.cardfail.2015.04.014
Okada M, Matsuzawa A, Yoshimura A, Ichijo H (2014) The lysosome rupture-activated TAK1-JNK pathway regulates NLRP3 inflammasome activation. J Biol Chem 289:32926–32936
pubmed: 25288801 pmcid: 4239639 doi: 10.1074/jbc.M114.579961
Li X, Zhu Q, Wang Q, Zhang Q, Zheng Y, Wang L et al (2020) Protection of Sacubitril/Valsartan against pathological cardiac remodeling by inhibiting the NLRP3 inflammasome after relief of pressure overload in mice. Cardiovasc Drugs Ther 34:629–640
pubmed: 32444995 pmcid: 7497317 doi: 10.1007/s10557-020-06995-x
Tuttolomondo A, Di Raimondo D, Pecoraro R, Arnao V, Pinto A, Licata G (2012) Atherosclerosis as an inflammatory disease. Curr Pharm Des 18(28):4266–4288
pubmed: 22390643 doi: 10.2174/138161212802481237
Ou HC, Chou WC, Hung CH, Chu PM, Hsieh PL, Chan SH, Tsai KL (2019) Galectin-3 aggravates ox-LDL-induced endothelial dysfunction through LOX-1 mediated signaling pathway. Environ Toxicol 34(7):825–835
pubmed: 30963716 doi: 10.1002/tox.22750
Wu G, Zhu Q, Zeng J, Gu X, Miao Y, Xu W, Lv T, Song Y (2019) Extracellular mitochondrial DNA promote NLRP3 inflammasome activation and induce acute lung injury through TLR9 and NF-κB. J Thorac Dis 11(11):4816
pubmed: 31903272 pmcid: 6940233 doi: 10.21037/jtd.2019.10.26
Gareus R, Kotsaki E, Xanthoulea S, van der Made I, Gijbels MJ, Kardakaris R, Polykratis A, Kollias G, de Winther MP, Pasparakis M (2008) Endothelial cell-specific NF-κB inhibition protects mice from atherosclerosis. Cell Metab 8(5):372–383
pubmed: 19046569 doi: 10.1016/j.cmet.2008.08.016
Mallavia B, Recio C, Oguiza A, Ortiz-Muñoz G, Lazaro I, Lopez-Parra V, Lopez-Franco O, Schindler S, Depping R, Egido J, Gomez-Guerrero C (2013) Peptide inhibitor of NF-κB translocation ameliorates experimental atherosclerosis. Am J Pathol 182(5):1910–1921
pubmed: 23597852 doi: 10.1016/j.ajpath.2013.01.022
Fujiwara N, Kobayashi K (2005) Macrophages in inflammation. Current Drug Targets-Inflamm Allergy 4(3):281–286
doi: 10.2174/1568010054022024
Tabata T, Mine S, Kawahara C, Okada Y, Tanaka Y (2003) Monocyte chemoattractant protein-1 induces scavenger receptor expression and monocyte differentiation into foam cells. Biochem Biophys Res Commun 305(2):380–385
pubmed: 12745086 doi: 10.1016/S0006-291X(03)00771-X
Akhter N, Wilson A, Thomas R, Al-Rashed F, Kochumon S, Al-Roub A, Arefanian H, Al-Madhoun A, Al-Mulla F, Ahmad R, Sindhu S (2021) Ros/tnf-α crosstalk triggers the expression of il-8 and mcp-1 in human monocytic thp-1 cells via the nf-κb and erk1/2 mediated signaling. Int J Mol Sci 22(19):10519
pubmed: 34638857 pmcid: 8508672 doi: 10.3390/ijms221910519
Abedimanesh N, Motlagh B, Abedimanesh S, Bathaie SZ, Separham A, Ostadrahimi A (2020) Effects of crocin and saffron aqueous extract on gene expression of SIRT1, AMPK, LOX1, NF-κB, and MCP-1 in patients with coronary artery disease: a randomized placebo-controlled clinical trial. Phytother Res 34(5):1114–1122
pubmed: 31797473 doi: 10.1002/ptr.6580
Hoseini Z, Sepahvand F, Rashidi B, Sahebkar A, Masoudifar A, Mirzaei H (2018) NLRP3 inflammasome: Its regulation and involvement in atherosclerosis. J Cell Physiol 233(3):2116–2132
pubmed: 28345767 doi: 10.1002/jcp.25930
Djurić T, Stanković A, Končar I, Radak D, Davidović L, Alavantić D, Živković M (2011) Association of MMP-8 promoter gene polymorphisms with carotid atherosclerosis: preliminary study. Atherosclerosis 219(2):673–678
pubmed: 21906737 doi: 10.1016/j.atherosclerosis.2011.08.025
Basurto L, Gregory MA, Hernández SB, Sánchez-Huerta L, Martínez AD, Manuel-Apolinar L, Avelar FJ, Alonso LA, Sánchez-Arenas R (2019) Monocyte chemoattractant protein-1 (MCP-1) and fibroblast growth factor-21 (FGF-21) as biomarkers of subclinical atherosclerosis in women. Exp Gerontol 1(124):110624
doi: 10.1016/j.exger.2019.05.013
Jacinto TA, Meireles GS, Dias AT, Aires R, Porto ML, Gava AL, Vasquez EC, Pereira TM, Campagnaro BP, Meyrelles SS (2018) Increased ROS production and DNA damage in monocytes are biomarkers of aging and atherosclerosis. Biol Res 51(1):1–3
doi: 10.1186/s40659-018-0182-7
Al-Kuraishy HM, Al-Gareeb AI, Al-Maiahy TJ (2018) Concept and connotation of oxidative stress in preeclampsia. J Lab Physicians 10(03):276–282
pubmed: 30078962 pmcid: 6052821 doi: 10.4103/JLP.JLP_26_18
Marchio P, Guerra-Ojeda S, Vila JM, Aldasoro M, Victor VM, Mauricio MD (2019) Targeting early atherosclerosis: a focus on oxidative stress and inflammation. Oxid Med Cell Longev. https://doi.org/10.1155/2019/8563845
doi: 10.1155/2019/8563845 pubmed: 31354915 pmcid: 6636482
Al-Kuraishy HM, Al-Gareeb AI, Al-Hussaniy HA, Al-Harcan NA, Alexiou A, Batiha GE (2022) Neutrophil Extracellular Traps (NETs) and Covid-19: a new frontiers for therapeutic modality. Int Immunopharmacol 6:108516
doi: 10.1016/j.intimp.2021.108516
Poznyak AV, Grechko AV, Orekhova VA, Khotina V, Ivanova EA, Orekhov AN (2020) NADPH oxidases and their role in atherosclerosis. Biomedicines 8(7):206
pubmed: 32664404 pmcid: 7399834 doi: 10.3390/biomedicines8070206
Hussien NR, Al-Niemi MS, Al-Kuraishy HM, Al-Gareeb AI (2021) Statins and Covid-19: the neglected front of bidirectional effects. J Pak Med Assoc 71(Suppl 8):S133–S136
Manea SA, Vlad ML, Fenyo IM, Lazar AG, Raicu M, Muresian H, Simionescu M, Manea A (2020) Pharmacological inhibition of histone deacetylase reduces NADPH oxidase expression, oxidative stress and the progression of atherosclerotic lesions in hypercholesterolemic apolipoprotein E-deficient mice; potential implications for human atherosclerosis. Redox Biol 1(28):101338
doi: 10.1016/j.redox.2019.101338
Lixia G, Haiyun Z, Xia Z (2021) The clinical effects of resveratrol on atherosclerosis treatment and its effect on the expression of NADPH oxidase complex genes in vascular smooth muscle cell line. Cell Mol Biol (Noisy-le-grand) 67(3):148–152
pubmed: 34933718 doi: 10.14715/cmb/2021.67.3.22
Zhang Y, Murugesan P, Huang K, Cai H (2020) NADPH oxidases and oxidase crosstalk in cardiovascular diseases: novel therapeutic targets. Nat Rev Cardiol 17(3):170–194
pubmed: 31591535 doi: 10.1038/s41569-019-0260-8
Al-Thomali AW, Al-Kuraishy HM, Al-Gareeb AI, K. Al-buhadiliy A, De Waard M, Sabatier JM, Khan Khalil AA, Saad HM, Batiha GE. (2022) Role of neuropilin 1 in COVID-19 patients with acute ischemic stroke. Biomedicines. 10(8):2032
Sun Y, Lu Y, Saredy J, Wang X, Drummer C IV, Shao Y, Saaoud F, Xu K, Liu M, Yang WY, Jiang X (2020) ROS systems are a new integrated network for sensing homeostasis and alarming stresses in organelle metabolic processes. Redox Biol 1(37):101696
doi: 10.1016/j.redox.2020.101696
Imran M, Hassan MQ, Akhtar MS, Rahman O, Akhtar M, Najmi AK (2019) Sacubitril and valsartan protect from experimental myocardial infarction by ameliorating oxidative damage in Wistar rats. Clin Exp Hypertens 41(1):62–69
pubmed: 29595329 doi: 10.1080/10641963.2018.1441862
Croteau D, Qin F, Chambers JM, Kallick E, Luptak I, Panagia M, Pimentel DR, Siwik DA, Colucci WS (2020) Differential effects of sacubitril/valsartan on diastolic function in mice with obesity-related metabolic heart disease. Basic Transl Sci 5(9):916–927
Nna VU, Abu Bakar AB, Ahmad A, Eleazu CO, Mohamed M (2019) Oxidative stress, NF-κb-mediated inflammation and apoptosis in the testes of streptozotocin–induced diabetic rats: combined protective effects of malaysian propolis and metformin. Antioxidants 8(10):465
pubmed: 31600920 pmcid: 6826571 doi: 10.3390/antiox8100465
Wang X, Bai M (2021) CircTM7SF3 contributes to oxidized low-density lipoprotein-induced apoptosis, inflammation and oxidative stress through targeting miR-206/ASPH axis in atherosclerosis cell model in vitro. BMC Cardiovasc Disord 21(1):1–4
Peng S, Lu XF, Qi YD, Li J, Xu J, Yuan TY, Wu XY, Ding Y, Li WH, Zhou GQ, Wei Y (2020) LCZ696 ameliorates oxidative stress and pressure overload-induced pathological cardiac remodeling by regulating the Sirt3/MnSOD pathway. Oxid Med Cell Longev. https://doi.org/10.1155/2020/9815039
doi: 10.1155/2020/9815039 pubmed: 33343808 pmcid: 7732383
Trivedi RK, Polhemus DJ, Li Z, Yoo D, Koiwaya H, Scarborough A, Goodchild TT, Lefer DJ (2018) Combined angiotensin receptor–neprilysin inhibitors improve cardiac and vascular function via increased no bioavailability in heart failure. J Am Heart Assoc 7(5):e008268
pubmed: 29502102 pmcid: 5866338 doi: 10.1161/JAHA.117.008268
Schulz E, Gori T, Münzel T (2011) Oxidative stress and endothelial dysfunction in hypertension. Hypertens Res 34(6):665–673
pubmed: 21512515 doi: 10.1038/hr.2011.39
Seki T, Goto K, Kansui Y, Ohtsubo T, Matsumura K, Kitazono T (2017) Angiotensin II receptor–neprilysin inhibitor sacubitril/valsartan improves endothelial dysfunction in spontaneously hypertensive rats. J Am Heart Assoc 6(10):e006617
pubmed: 29042424 pmcid: 5721864 doi: 10.1161/JAHA.117.006617
Gao A, Wang Y, Gao X, Tian W (2021) LCZ696 ameliorates lipopolysaccharide-induced endothelial injury. Aging (Albany NY) 13(7):9582
pubmed: 33839697 doi: 10.18632/aging.202692
Kockx MM, Herman AG (2000) Apoptosis in atherosclerosis: beneficial or detrimental. Cardiovasc Res 45(3):736–746
pubmed: 10728396 doi: 10.1016/S0008-6363(99)00235-7
Shan R et al (2021) Apoptosis, autophagy and atherosclerosis: relationships and the role of Hsp27. Pharmacol Res 166:105169
pubmed: 33053445 doi: 10.1016/j.phrs.2020.105169
Paone S et al (2019) Endothelial cell apoptosis and the role of endothelial cell-derived extracellular vesicles in the progression of atherosclerosis. Cell Mol Life Sci 76(6):1093–1106
pubmed: 30569278 doi: 10.1007/s00018-018-2983-9
Kim Nam-Ho, Kang Peter M (2010) Apoptosis in cardiovascular diseases: mechanism and clinical implications. Korean Circ J 40(7):299–305
pubmed: 20664736 pmcid: 2910284 doi: 10.4070/kcj.2010.40.7.299
Xia Y et al (2017) LCZ696 improves cardiac function via alleviating Drp1-mediated mitochondrial dysfunction in mice with doxorubicin-induced dilated cardiomyopathy. J Mol Cell Cardiol 108:138–148
pubmed: 28623750 doi: 10.1016/j.yjmcc.2017.06.003
Moore KJ, Sheedy FJ, Fisher EA (2013) Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 13(10):709–721
pubmed: 23995626 pmcid: 4357520 doi: 10.1038/nri3520
Yuan T, Yang T, Chen H, Fu D, Hu Y, Wang J, Yuan Q, Yu H, Xu W, Xie X (2019) New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biol 1(20):247–260
doi: 10.1016/j.redox.2018.09.025
Suzuki K et al (2021) Pulse pressure, prognosis, and influence of sacubitril/valsartan in heart failure with preserved ejection fraction. Hypertension 77(2):546–556
pubmed: 33356401 doi: 10.1161/HYPERTENSIONAHA.120.16277
Packer Milton (2018) Augmentation of glucagon-like peptide-1 receptor signalling by neprilysin inhibition: potential implications for patients with heart failure. Eur J Heart Fail 20(6):973–977
pubmed: 29603541 doi: 10.1002/ejhf.1185
García RD, Ramirez JM, Peral de Bruno M, Miatello RM, Renna NF. Dual ARB/NEP Inhibition with LCZ696 improved endothelial regeneration in an experimental model of metabolic syndrome.
Al-Kuraishy HM, Hussien NR, Al-Naimi MS, Al-Buhadily AK, Al-Gareeb AI, Lungnier C (2020) Renin-Angiotensin system and fibrinolytic pathway in COVID-19: one-way skepticism. Biomed Biotechnol Res J (BBRJ) 4(5):33
Lugnier C, Al-Kuraishy HM, Rousseau E (2021) PDE4 inhibition as a therapeutic strategy for improvement of pulmonary dysfunctions in Covid-19 and cigarette smoking. Biochem Pharmacol 1(185):114431
doi: 10.1016/j.bcp.2021.114431
Al-Kuraishy HM, Al-Gareeb AI, Al-Nami MS (2020) Irbesartan attenuates gentamicin-induced nephrotoxicity in rats through modulation of oxidative stress and endogenous antioxidant capacity. Int J Prevent Med 11(3):200–205
Grote K, Drexler H, Schieffer B (2004) Renin–angiotensin system and atherosclerosis. Nephrol Dial Transplant 19(4):770–773
pubmed: 15031327 doi: 10.1093/ndt/gfh030
Schmidt-Ott KM, Kagiyama S, Phillips MI (2000) The multiple actions of angiotensin II in atherosclerosis. Regul Pept 93(1–3):65–77
pubmed: 11033054 doi: 10.1016/S0167-0115(00)00178-6
Liu X, Gao RW, Li M, Si CF, He YP, Wang M, Yang Y, Zheng QY, Wang CY (2016) The ROS derived mitochondrial respirstion not from NADPH oxidase plays key role in Celastrol against angiotensin II-mediated HepG2 cell proliferation. Apoptosis 21(11):1315–1326
pubmed: 27658784 doi: 10.1007/s10495-016-1294-6
Jansen T, Kröller-Schön S, Schönfelder T, Foretz M, Viollet B, Daiber A, Oelze M, Brandt M, Steven S, Kvandová M, Kalinovic S (2018) α1AMPK deletion in myelomonocytic cells induces a pro-inflammatory phenotype and enhances angiotensin II-induced vascular dysfunction. Cardiovasc Res 114(14):1883–1893
pubmed: 29982418 pmcid: 6455900 doi: 10.1093/cvr/cvy172
Husain K, Hernandez W, Ansari RA, Ferder L (2015) Inflammation, oxidative stress and renin angiotensin system in atherosclerosis. World J Biol Chem 6(3):209
pubmed: 26322175 pmcid: 4549761 doi: 10.4331/wjbc.v6.i3.209
Wu Y, Liu Y, Zhang L, Wen L, Xie Y (2022) Aconiti lateralis radix praeparata total alkaloids exert anti-RA effects by regulating NF-κB and JAK/STAT signaling pathways and promoting apoptosis. Front Pharmacol 1:13
Ohishi M, Dusting GJ, Fennessy PA, Mendelsohn FA, Li XC, Zhuo JL (2010) Increased expression and co-localization of ACE, angiotensin II AT1 receptors and inducible nitric oxide synthase in atherosclerotic human coronary arteries. Int J Physiol Pathophysiol Pharmacol 2(2):111
pubmed: 21179388 pmcid: 3004229
Sakurai S, Jojima T, Iijima T, Tomaru T, Usui I, Aso Y (2020) Empagliflozin decreases the plasma concentration of plasminogen activator inhibitor-1 (PAI-1) in patients with type 2 diabetes: association with improvement of fibrinolysis. J Diabetes Complications 34(11):107703
pubmed: 32883567 doi: 10.1016/j.jdiacomp.2020.107703
valsartan are more effective than ACEIs through attenuation of alternative production of AngII and activation of vasculoprotective AT2R
Poznyak AV, Bharadwaj D, Prasad G, Grechko AV, Sazonova MA, Orekhov AN (2021) Renin-angiotensin system in pathogenesis of atherosclerosis and treatment of CVD. Int J Mol Sci 22(13):6702
pubmed: 34206708 pmcid: 8269397 doi: 10.3390/ijms22136702
Lévy BI, Mourad JJ (2022) Renin angiotensin blockers and cardiac protection: from basis to clinical trials. Am J Hypertens 35(4):293–302
pubmed: 34265036 doi: 10.1093/ajh/hpab108
Ding Y, Chen J, Cui G, Wei Y, Lu C, Wang L, Diao H (2016) Pathophysiological role of osteopontin and angiotensin II in atherosclerosis. Biochem Biophys Res Commun 471(1):5–9
pubmed: 26828266 doi: 10.1016/j.bbrc.2016.01.142
Wolak T (2014) Osteopontin–a multi-modal marker and mediator in atherosclerotic vascular disease. Atherosclerosis 236(2):327–337
pubmed: 25128758 doi: 10.1016/j.atherosclerosis.2014.07.004
Ding Z, Liu S, Wang X, Khaidakov M, Dai Y, Deng X, Fan Y, Xiang D, Mehta JL (2015) Lectin-like ox-LDL receptor-1 (LOX-1)–Toll-like receptor 4 (TLR4) interaction and autophagy in CATH a differentiated cells exposed to angiotensin II. Mol Neurobiol 51(2):623–32
pubmed: 24902807 doi: 10.1007/s12035-014-8756-z
Kattoor AJ, Kanuri SH, Mehta JL (2019) Role of Ox-LDL and LOX-1 in atherogenesis. Curr Med Chem 26(9):1693–1700
pubmed: 29737246 doi: 10.2174/0929867325666180508100950
Aoyama T, Minatoguchi S (2011) The effect of ARB on prevention of atherosclerosis. Nihon rinsho Jpn J Clin Med 69(1):92–9
Husain K, Suarez E, Isidro A, Ferder L (2010) Effects of paricalcitol and enalapril on atherosclerotic injury in mouse aortas. Am J Nephrol 32(4):296–304
pubmed: 20720404 doi: 10.1159/000319445
Da Cunha V, Tham DM, Martin-McNulty B, Deng G, Ho JJ, Wilson DW, Rutledge JC, Vergona R, Sullivan ME, Wang YX (2005) Enalapril attenuates angiotensin II-induced atherosclerosis and vascular inflammation. Atherosclerosis 178(1):9–17
pubmed: 15585195 doi: 10.1016/j.atherosclerosis.2004.08.023
Hirohata A, Yamamoto K, Miyoshi T, Hatanaka K, Hirohata S, Yamawaki H, Komatsubara I, Hirose E, Kobayashi Y, Ohkawa K, Ohara M (2012) Four-year clinical outcomes of the OLIVUS-Ex (impact of Olmesartan on progression of coronary atherosclerosis: evaluation by intravascular ultrasound) extension trial. Atherosclerosis 220(1):134–138
pubmed: 22119063 doi: 10.1016/j.atherosclerosis.2011.10.013
Katogiannis K, Ikonomidis I, Stamouli M, Makavos G, Tsilivarakis D, Koliou G, Vythoulkas D, Tsirigotis P (2021) Effect of sacubitril/valsartan on left ventricular longitudinal strain in patients with hematologic malignancies after bone marrow transplantation. Eur Heart J 42(Supplement_1):ehab724-020
doi: 10.1093/eurheartj/ehab724.020
Wei S, Sun J, Li Y, Xu K, Wang M, Zhang Y (2022) Losartan attenuates atherosclerosis in uremic mice by regulating Treg/Th17 balance via mediating PTEN/PI3K/Akt pathway. Nephron 17:1–1
Sansoè G, Aragno M, Wong F (2020) Pathways of hepatic and renal damage through non-classical activation of the renin-angiotensin system in chronic liver disease. Liver Int 40(1):18–31
pubmed: 31580514 doi: 10.1111/liv.14272
Anguiano L, Riera M, Pascual J, Soler MJ (2017) Circulating ACE2 in cardiovascular and kidney diseases. Curr Med Chem 24(30):3231–3241
pubmed: 28413960 doi: 10.2174/0929867324666170414162841
Wang Y, Tikellis C, Thomas MC, Golledge J (2013) Angiotensin converting enzyme 2 and atherosclerosis. Atherosclerosis 226(1):3–8
pubmed: 22947420 doi: 10.1016/j.atherosclerosis.2012.08.018
Bossi F, Bernardi S, De Nardo D, Bramante A, Candido R, Carretta R, Fischetti F, Fabris B (2016) Angiotensin 1–7 significantly reduces diabetes-induced leukocyte recruitment both in vivo and in vitro. Atherosclerosis 1(244):121–130
doi: 10.1016/j.atherosclerosis.2015.11.017
AlAnazi FH, Al-kuraishy HM, Al-Gareeb AI, Alexiou A, Papadakis M, Ogaly HA, Alanazi YA, Saad HM, Batiha GE (2019) Effects of neprilysin and neprilysin inhibitors on glucose homeostasis: controversial points and a promising arena. J Diabetes. https://doi.org/10.1111/1753-0407.13389
doi: 10.1111/1753-0407.13389
Suematsu Y, Jing W, Nunes A, Kashyap ML, Khazaeli M, Vaziri ND, Moradi H (2018) LCZ696 (sacubitril/valsartan), an angiotensin-receptor neprilysin inhibitor, attenuates cardiac hypertrophy, fibrosis, and vasculopathy in a rat model of chronic kidney disease. J Cardiac Fail 24(4):266–275
doi: 10.1016/j.cardfail.2017.12.010
Renna NF, Ramirez JM, Garcia RD, Miatello RM. (2018) Role of Insulin Resistance in Vascular Inflammation. InUltimate Guide to Insulin . IntechOpen
Jordan J, Stinkens R, Jax T, Engeli S, Blaak EE, May M, Havekes B, Schindler C, Albrecht D, Pal P, Heise T (2017) Improved insulin sensitivity with angiotensin receptor neprilysin inhibition in individuals with obesity and hypertension. Clin Pharmacol Ther 101(2):254–263
pubmed: 27542885 doi: 10.1002/cpt.455
Di Pino A, DeFronzo RA (2019) Insulin resistance and atherosclerosis: implications for insulin-sensitizing agents. Endocr Rev 40(6):1447–1467
pubmed: 31050706 pmcid: 7445419 doi: 10.1210/er.2018-00141
Kurata M, Okura T, Irita J, Enomoto D, Nagao T, Jotoku M, Miyoshi K, Desilva VR, Higaki J (2011) Angiotensin II receptor blockade with valsartan decreases plasma osteopontin levels in patients with essential hypertension. J Hum Hypertens 25(5):334–339
pubmed: 20664555 doi: 10.1038/jhh.2010.73
Song C, Hongbing Y, Shujuan C, Shuzheng L, Yundai C, Guoxiang H, Xiantao S, Zening J, Lijun M, CuiSong V (2011) The impact of Valsartan on vascular endothelial cells in plaque with ApoE knockout mice. Heart 97(Suppl 3):A23–A24
doi: 10.1136/heartjnl-2011-300867.66
Martyniak A, Tomasik PJ (2023) A New perspective on the renin-angiotensin system. Diagnostics 13(1):16
doi: 10.3390/diagnostics13010016
Mori J, Zhang L, Oudit GY, Lopaschuk GD (2013) Impact of the renin–angiotensin system on cardiac energy metabolism in heart failure. J Mol Cell Cardiol 1(63):98–106
doi: 10.1016/j.yjmcc.2013.07.010
Kusaka H et al (2015) LCZ696, angiotensin II receptor-neprilysin inhibitor, ameliorates high-salt-induced hypertension and cardiovascular injury more than valsartan alone. Am J Hypertens 28:1409–1417
pubmed: 25762811 doi: 10.1093/ajh/hpv015
Gupta DK, Daniels LB, Cheng S, deFilippi CR, Criqui MH, Maisel AS, Lima JA, Bahrami H, Greenland P, Cushman M, Tracy R (2017) Differences in natriuretic peptide levels by race/ethnicity (from the multi-ethnic study of atherosclerosis). Am J Cardiol 120(6):1008–1015
pubmed: 28750825 pmcid: 5575954 doi: 10.1016/j.amjcard.2017.06.030
Imanishi T et al (2008) Effects of angiotensin converting enzyme inhibitor and angiotensin II receptor antagonist combination on nitric oxide bioavailability and atherosclerotic change in Watanabe heritable hyperlipidemic rabbits. Hypertens Res 31:575–584
pubmed: 18497479 doi: 10.1291/hypres.31.575
McMurray JJ et al (2014) Angiotensin- neprilysin inhibition versus enalapril in heart failure. N Engl J Med 371:993–1004
pubmed: 25176015 doi: 10.1056/NEJMoa1409077
Hayashi K, Sasamura H, Azegami T, Itoh H (2012) Regression of atherosclerosis in apolipoprotein E-deficient mice is feasible using high-dose angiotensin receptor blocker, candesartan. J Atheroscler Thromb 19:736–746
pubmed: 22576470
Solomon SD et al (2012) The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind randomized controlled trial. Lancet 380:1387–1395
pubmed: 22932717 doi: 10.1016/S0140-6736(12)61227-6
Mogensen UM et al (2017) The effects of sacubitril/valsartan on coronary outcomes in PARADIGM-HF. Am Heart J 188:35–41
pubmed: 28577679 doi: 10.1016/j.ahj.2017.02.034
Quagliariello V, Buccolo S, Iovine M, Maurea F, Rea D, Barbieri A, Maurea N (2021) 54 Sacubitril–valsartan (LCZ 696) improves longitudinal strain and ejection fraction in preclinical models treated with doxorubicin through NLRP3, MyD88, and pro-fibrotic chemokines. Eur Heart J Suppl 23(Supplement_G):suab130-008
doi: 10.1093/eurheartj/suab130.008
Nomura S, Shouzu A, Omoto S, Nishikawa M, Fukuhara S, Iwasaka T (2006) Effect of valsartan on monocyte/endothelial cell activation markers and adiponectin in hypertensive patients with type 2 diabetes mellitus. Thromb Res 117(4):385–392
pubmed: 15896827 doi: 10.1016/j.thromres.2005.04.008
Li QZ, Deng Q, Li JQ, Yi GH, Zhao SP (2005) Valsartan reduces interleukin-1β secretion by peripheral blood mononuclear cells in patients with essential hypertension. Clin Chim Acta 355(1–2):131–136
pubmed: 15820487 doi: 10.1016/j.cccn.2004.12.006
Yandrapalli S, Aronow WS, Mondal P, Chabbott DR (2017) Limitations of sacubitril/valsartan in the management of heart failure. Am J Ther 24(2):e234–e239
pubmed: 27574931 doi: 10.1097/MJT.0000000000000473
Sorrentino A, Steinhorn B, Troncone L (2019) Reversal of heart failure in a chemogenetic model of persistent cardiac redox stress. Am J Physiol Heart Circ Physiol 317:H617–H626
pubmed: 31298558 pmcid: 6766720 doi: 10.1152/ajpheart.00177.2019
D’Elia E, Iacovoni A, Vaduganathan M, Lorini FL, Perlini S, Senni M (2017) Neprilysin inhibition in heart failure: mechanisms and substrates beyond modulating natriuretic peptides. Eur J Heart Fail 19:710–717
pubmed: 28326642 doi: 10.1002/ejhf.799
Cangiano E, Marchesini J, Campo G, Francolini G, Fortini C, Carrà G, Miccoli M, Ceconi C, Tavazzi L, Ferrari R (2011) ACE inhibition modulates endothelial apoptosis and renewal via endothelial progenitor cells in patients with acute coronary syndromes. Am J Cardiovasc Drugs 11:189–198
pubmed: 21619382 doi: 10.2165/11589400-000000000-00000
Wang ZC, Qi J, Liu LM, Li J, Xu HY, Liang B, Li B (2017) Valsartan reduces AT1-AA-induced apoptosis through suppression oxidative stress mediated ER stress in endothelial progenitor cells. Eur Rev Med Pharmacol Sci 21(5):1159–1168
pubmed: 28338173
Madan N, Lee AK, Matsushita K, Hoogeveen RC, Ballantyne CM, Selvin E, McEvoy JW (2019) Relation of isolated systolic hypertension and pulse pressure to high-sensitivity cardiac troponin-T and N-terminal pro-B-type natriuretic peptide in older adults (from the atherosclerosis risk in communities study). Am J Cardiol 124(2):245–252
pubmed: 31088661 pmcid: 6581585 doi: 10.1016/j.amjcard.2019.04.030
Liu J, Lin Q, Guo D, Yang Y, Zhang X, Tu J, Ning X, Song Y, Wang J (2020) Association between pulse pressure and carotid intima-media thickness among low-income adults aged 45 years and older: a population-based cross-sectional study in rural China. Front Cardiovasc Med. https://doi.org/10.3389/fcvm.2020.547365
doi: 10.3389/fcvm.2020.547365 pubmed: 33796567 pmcid: 7786017
Zheng L, Xia B, Zhang X, Zhao Y (2021) A meta-analysis on the effect and safety of LCZ696 in the treatment of hypertension. Cardiol Res Pract. https://doi.org/10.1155/2021/8867578
doi: 10.1155/2021/8867578 pubmed: 34426769 pmcid: 8380156
Alsaidan AA, Al-Kuraishy HM, Al-Gareeb AI, Alexiou A, Papadakis M, Alsayed KA, Saad HM, Batiha GE (2023) The potential role of SARS-CoV-2 infection in acute coronary syndrome and type 2 myocardial infarction (T2MI): Intertwining spread. Immun Inflamm Dis 11(3):e798
pubmed: 36988260 pmcid: 10022425 doi: 10.1002/iid3.798
Al-Kuraishy HM, Al-Gareeb AI, Saad HM, Batiha GE (2023) The potential therapeutic effect of statins in multiple sclerosis: beneficial or detrimental effects. Inflammopharmacology 9:1–2
Sami OM, Shams HA, Aziz HM, Al-kuraishy HM (2022) The Substantial effects of statins therapy on PCSK9 and adipocytokine in dyslipidemic non-diabetic patients: prevailing motive. HIV Nursing 22(2):1434–1439
Alomair BM, Al-Kuraishy HM, Al-Gareeb AI, Al-Hamash SM, De Waard M, Sabatier JM, Saad HM, El-Saber BG (2022) Montelukast and acute coronary syndrome: the endowed drug. Pharmaceuticals 15(9):1147
pubmed: 36145367 pmcid: 9500901 doi: 10.3390/ph15091147
Alkhayyat SS, Al-Kuraishy HM, Al-Gareeb AI, El-Bouseary MM, AboKamer AM, Batiha GE, Simal-Gandara J (2022) Fenofibrate for COVID-19 and related complications as an approach to improve treatment outcomes: the missed key for Holy Grail. Inflamm Res 8:1–9
Al-Kuraishy HM, Al-Gareeb AI, Negm WA, Alexiou A, Batiha GE (2022) Ursolic acid and SARS-CoV-2 infection: a new horizon and perspective. Inflammopharmacology 30(5):1493–1501
pubmed: 35922738 pmcid: 9362167 doi: 10.1007/s10787-022-01038-3
Batiha GE, Al-Gareeb AI, Rotimi D, Adeyemi OS, Al-Kuraishy HM (2022) Common NLRP3 inflammasome inhibitors and Covid-19: Divide and Conquer. Scientific African 22:e01407
doi: 10.1016/j.sciaf.2022.e01407
Alrouji M, Al-kuraishy HM, Al-Gareeb AI, Alexiou A, Papadakis M, Jabir MS, Saad HM, Batiha GE (2023) NF-κB/NLRP3 inflammasome axis and risk of Parkinson’s disease in Type 2 diabetes mellitus: a narrative review and new perspective. J Cell Mol Med 27(13):1775–1789
pubmed: 37210624 pmcid: 10315781 doi: 10.1111/jcmm.17784
Batiha GE, Al-Gareeb AI, Elekhnawy E, Al-Kuraishy HM (2022) Potential role of lipoxin in the management of COVID-19: a narrative review. Inflammopharmacology 30(6):1993–2001
pubmed: 36114383 pmcid: 9483298 doi: 10.1007/s10787-022-01070-3
Al-Kuraishy HM, Al-Gareeb AI, Alexiou A, Batiha GE (2022) COVID-19 and L-arginine supplementations: yet to find the missed key. Curr Protein Pept Sci 23(3):166–169
pubmed: 35549865 doi: 10.2174/1389203723666220512104039
Al-Kuraishy HM, Al-Gareeb AI, Fageyinbo MS, Batiha GE (2022) Vinpocetine is the forthcoming adjuvant agent in the management of COVID-19. Future Sci OA 8(5):FSO797
pubmed: 35662743 pmcid: 9017700 doi: 10.2144/fsoa-2021-0099
Batiha GE, Al-Kuraishy HM, Al-Gareeb AI, Ashour NA, Negm WA (2023) Potential role of tirzepatide towards Covid-19 infection in diabetic patients: a perspective approach. Inflammopharmacology 19:1–1
doi: 10.1007/s10787-022-01087-8
Babalghith AO, Al-Kuraishy HM, Al-Gareeb AI, De Waard M, Al-Hamash SM, Jean-Marc S, Negm WA, Batiha GE (2022) The role of berberine in Covid-19: potential adjunct therapy. Inflammopharmacology 30(6):2003–2016
pubmed: 36183284 pmcid: 9526677 doi: 10.1007/s10787-022-01080-1
Alorabi M, Cavalu S, Al-Kuraishy HM, Al-Gareeb AI, Mostafa-Hedeab G, Negm WA, Youssef A, El-Kadem AH, Saad HM, Batiha GE (2022) Pentoxifylline and berberine mitigate diclofenac-induced acute nephrotoxicity in male rats via modulation of inflammation and oxidative stress. Biomed Pharmacother 1(152):113225
doi: 10.1016/j.biopha.2022.113225
Rasheed HA, Al-Naimi MS, Hussien NR, Al-Harchan NA, Al-Kuraishy HM, Al-Gareeb AI (2020) New insight into the effect of lycopene on the oxidative stress in acute kidney injury. Int J Crit Illn Inj Sci 10(Suppl 1):11
pubmed: 33376684 pmcid: 7759068
Al-Kuraishy HM, Al-Gareeb AI, Al-Nami MS (2019) Vinpocetine improves oxidative stress and pro-inflammatory mediators in acute kidney injury. Int J Prev Med 10(1):142
pubmed: 31516683 pmcid: 6710925 doi: 10.4103/ijpvm.IJPVM_5_19
Abdul-Hadi MH, Naji MT, Shams HA, Sami OM, Al-Harchan NA, Al-Kuraishy HM, Al-Gareeb AI (2020) Oxidative stress injury and glucolipotoxicity in type 2 diabetes mellitus: the potential role of metformin and sitagliptin. Biomed Biotechnol Res J (BBRJ) 4(2):166
Al-Kuraishy HM, Al-Gareeb AI, Alzahrani KJ, Cruz-Martins N, Batiha GE (2021) The potential role of neopterin in Covid-19: a new perspective. Mol Cell Biochem 476:4161–4166
pubmed: 34319496 pmcid: 8317144 doi: 10.1007/s11010-021-04232-z
Kadhim SS, Al-Windy SA, Al-Kuraishy HM, Al-Gareeb AI (2019) Endothelin-1 is a surrogate biomarker link severe periodontitis and endothelial dysfunction in hypertensive patients: the potential nexus. J Int Oral Health 11(6):369
doi: 10.4103/jioh.jioh_158_19
Al-kuraishy HM, Al-Gareeb AI, Kaushik A, Kujawska M, Batiha GE (2022) Ginkgo biloba in the management of the COVID-19 severity. Arch Pharm 355(10):2200188
doi: 10.1002/ardp.202200188
Al-Kuraishy HM, Al-Gareeb AI, Al-Maiahy TJ, Alexiou A, Mukerjee N, Batiha GE (2022) An insight into the placental growth factor (PlGf)/angii axis in Covid-19: a detrimental intersection. Biotechnol Genet Eng Rev 15:1–20
Al-Kuraishy HM, Batiha GE, Faidah H, Al-Gareeb AI, Saad HM, Simal-Gandara J (2022) Pirfenidone and post-Covid-19 pulmonary fibrosis: invoked again for realistic goals. Inflammopharmacology 31:1
pubmed: 36418600 pmcid: 9685016
Saad HM, Tourky GF, Al-Kuraishy HM, Al-Gareeb AI, Khattab AM, Elmasry SA, Alsayegh AA, Hakami ZH, Alsulimani A, Sabatier JM, Eid MW (2022) The potential role of MUC16 (CA125) biomarker in lung cancer: a magic biomarker but with adversity. Diagnostics 12(12):2985
pubmed: 36552994 pmcid: 9777200 doi: 10.3390/diagnostics12122985
Batiha GE, Al-Kuraishy HM, Al-Maiahy TJ, Al-Buhadily AK, Saad HM, Al-Gareeb AI, Simal-Gandara J (2022) Plasminogen activator inhibitor 1 and gestational diabetes: the causal relationship. Diabetol Metab Syndr 14(1):1–6
doi: 10.1186/s13098-022-00900-2
Al-Kuraishy HM, Al-Gareeb AI, Al-Harcan NA, Alexiou A, Batiha GE (2023) Tranexamic acid and plasminogen/plasmin glaring paradox in COVID-19. Endocr Metab Immune Disord Drug Targets 23(1):35–45
pubmed: 35927893 doi: 10.2174/1871530322666220801102402

Auteurs

Hayder M Al-Kuraishy (HM)

Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyia University, Baghdad, Iraq.

Ali I Al-Gareeb (AI)

Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyia University, Baghdad, Iraq.

Engy Elekhnawy (E)

Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt. engy.ali@pharm.tanta.edu.eg.

Gaber El-Saber Batiha (GE)

Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AL Beheira, Egypt. gaberbatiha@gmail.com.

Classifications MeSH