Groundwater security indicators and their drivers: An assessment made in a region of tropical climate (Paraopeba River basin, Brazil).
Aquifer specific yield
Hydrologic drought
Hydrologic turnover time
Land use conversion
Mobile storage
Water-retention infrastructure
Journal
The Science of the total environment
ISSN: 1879-1026
Titre abrégé: Sci Total Environ
Pays: Netherlands
ID NLM: 0330500
Informations de publication
Date de publication:
25 Nov 2023
25 Nov 2023
Historique:
received:
15
06
2023
revised:
26
07
2023
accepted:
29
07
2023
pubmed:
2
8
2023
medline:
2
8
2023
entrez:
1
8
2023
Statut:
ppublish
Résumé
Groundwater helps overcoming periods of drought buffering their effects on water supply to people, natural ecosystems and the economy. Following the latest Conference of the Parties (COP27), groundwater research gained renewed impulse because the Parties committed themselves to invest on environmental dimensions of water security related with aquifer characterization and protection. In that context, the purpose of this study was to help providing an integrated assessment to some fundamental issues about groundwater security, summarized as the three "how"s: how much, how ready and for how long can groundwater be delivered from watersheds? A complementary goal was to identify and quantify the role of watershed characteristics controlling these "how"s. The methodology combined hydrologic modeling and GIS and the results for the test site (Paraopeba River basin, Brazil) were: (1) the studied river tributaries mostly drain regolith aquifers with short hydrologic turnover times (1.3-23.7 yr) and small aquifer mobile storages (0.1-1.3 m), but high specific yields (0.2-8.2 m/yr), being generally prone to hydrologic droughts; (2) the specific discharge is primarily elevation controlled (via precipitation increases with altitude), but relates positively with drainage density as well; (3) the mobile storage in the Quadrilátero-Ferrífero mountain is larger than elsewhere, being influenced by a local geomorphologic setting (higher coverage with concave hillslopes); (4) the groundwater contribution to streamflow discharge is high (> 50 %, on average), being improved with the coverage of argisols; (5) vulnerability to droughts could be alleviated through expansion of water-retention infrastructure in specific regions, as well as through land use conversions targeting reduced evapotranspiration or sustainable land management of argisol and concave surface landscapes. Although applied to a specific catchment, our results stand on a site-independent methodological framework. Thus, the understanding about groundwater security gained with this study can be inspiring to other workers dealing with tropical climate landscapes.
Identifiants
pubmed: 37527724
pii: S0048-9697(23)04544-8
doi: 10.1016/j.scitotenv.2023.165919
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
165919Informations de copyright
Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.
Déclaration de conflit d'intérêts
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.