Evolution of the neuronal substrate for kin recognition in social Hymenoptera.

Hymenoptera basiconic sensilla brain adaptation cuticular hydrocarbons eusociality kin selection olfactory receptors olfactory system social recognition

Journal

Biological reviews of the Cambridge Philosophical Society
ISSN: 1469-185X
Titre abrégé: Biol Rev Camb Philos Soc
Pays: England
ID NLM: 0414576

Informations de publication

Date de publication:
12 2023
Historique:
revised: 18 07 2023
received: 11 08 2022
accepted: 20 07 2023
medline: 7 11 2023
pubmed: 2 8 2023
entrez: 2 8 2023
Statut: ppublish

Résumé

In evolutionary terms, life is about reproduction. Yet, in some species, individuals forgo their own reproduction to support the reproductive efforts of others. Social insect colonies for example, can contain up to a million workers that actively cooperate in tasks such as foraging, brood care and nest defence, but do not produce offspring. In such societies the division of labour is pronounced, and reproduction is restricted to just one or a few individuals, most notably the queen(s). This extreme eusocial organisation exists in only a few mammals, crustaceans and insects, but strikingly, it evolved independently up to nine times in the order Hymenoptera (including ants, bees and wasps). Transitions from a solitary lifestyle to an organised society can occur through natural selection when helpers obtain a fitness benefit from cooperating with kin, owing to the indirect transmission of genes through siblings. However, this process, called kin selection, is vulnerable to parasitism and opportunistic behaviours from unrelated individuals. An ability to distinguish kin from non-kin, and to respond accordingly, could therefore critically facilitate the evolution of eusociality and the maintenance of non-reproductive workers. The question of how the hymenopteran brain has adapted to support this function is therefore a fundamental issue in evolutionary neuroethology. Early neuroanatomical investigations proposed that social Hymenoptera have expanded integrative brain areas due to selection for increased cognitive capabilities in the context of processing social information. Later studies challenged this assumption and instead pointed to an intimate link between higher social organisation and the existence of developed sensory structures involved in recognition and communication. In particular, chemical signalling of social identity, known to be mediated through cuticular hydrocarbons (CHCs), may have evolved hand in hand with a specialised chemosensory system in Hymenoptera. Here, we compile the current knowledge on this recognition system, from emitted identity signals, to the molecular and neuronal basis of chemical detection, with particular emphasis on its evolutionary history. Finally, we ask whether the evolution of social behaviour in Hymenoptera could have driven the expansion of their complex olfactory system, or whether the early origin and conservation of an olfactory subsystem dedicated to social recognition could explain the abundance of eusocial species in this insect order. Answering this question will require further comparative studies to provide a comprehensive view on lineage-specific adaptations in the olfactory pathway of Hymenoptera.

Identifiants

pubmed: 37528574
doi: 10.1111/brv.13003
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2226-2242

Informations de copyright

© 2023 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

Références

Andersson, M. N., Löfstedt, C. & Newcomb, R. D. (2015). Insect olfaction and the evolution of receptor tuning. Frontiers in Ecology and Evolution 3, 1-14.
Anton, S. & Gnatzy, W. (1998). Prey specificity and the importance of close-range chemical cues in prey recognition in the digger wasp, Liris niger. Journal of Insect Behavior 11, 671-690.
Arnold, G., Masson, C. & Budharugsa, S. (1985). Comparative study of the antennal lobes and their afferent pathway in the worker bee and the drone (Apis mellifera). Cell and Tissue Research 242, 593-605.
Aso, Y. & Rubin, G. M. (2016). Dopaminergic neurons write and update memories with cell-type-specific rules. eLife 5, e16135.
Aso, Y., Sitaraman, D., Ichinose, T., Kaun, K. R., Vogt, K., Belliart-Guérin, G., Plaçais, P.-Y., Robie, A. A., Yamagata, N., Schnaitmann, C., Rowell, W. J., Johnston, R. M., Ngo, T.-T. B., Chen, N., Korff, W., et al. (2014). Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila. eLife 3, e04580.
Axelrod, R. & Hamilton, W. (1981). The evolution of cooperation. Science 211, 1390-1396.
Bank, S., Sann, M., Mayer, C., Meusemann, K., Donath, A., Podsiadlowski, L., Kozlov, A., Petersen, M., Krogmann, L., Meier, R., Rosa, P., Schmitt, T., Wurdack, M., Liu, S., Zhou, X., et al. (2017). Transcriptome and target DNA enrichment sequence data provide new insights into the phylogeny of vespid wasps (Hymenoptera: Aculeata: Vespidae). Molecular Phylogenetics and Evolution 116, 213-226.
Baracchi, D., Petrocelli, I., Chittka, L., Ricciardi, G. & Turillazzi, S. (2015). Speed and accuracy in nest-mate recognition: a hover wasp prioritizes face recognition over colony odour cues to minimize intrusion by outsiders. Proceedings of the Royal Society B: Biological Sciences 282, 20142750.
Benton, R., Sachse, S., Michnick, S. W. & Vosshall, L. B. (2006). Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biology 4, e20.
Blaimer, B. B., Santos, B. F., Cruaud, A., Gates, M. W., Kula, R. R., Mikó, I., Rasplus, J.-Y., Smith, D. R., Talamas, E. J., Brady, S. G. & Buffington, M. L. (2023). Key innovations and the diversification of Hymenoptera. Nature Communications 14, 1212.
Bontonou, G. & Wicker-Thomas, C. (2014). Sexual communication in the Drosophila genus. Insects 5, 439-458.
Boomsma, J. J. (2009). Lifetime monogamy and the evolution of eusociality. Philosophical Transactions of the Royal Society B: Biological Sciences 364, 3191-3207.
Boomsma, J. J. & d'Ettorre, P. (2013). Nice to kin and nasty to non-kin: revisiting Hamilton's early insights on eusociality. Biology Letters 9, 20130444.
Borden, J. H., Miller, G. E. & Richerson, J. V. (1973). A possible new sensillum on the antennae of Itoplectis conquisitor (Hymenoptera: Ichneumonidae). The Canadian Entomologist 105, 1363-1367.
Bos, N. & d'Ettorre, P. (2012). Recognition of social identity in ants. Frontiers in Psychology 3, 1-6.
Bos, N., Dreier, S., Jørgensen, C. G., Nielsen, J., Guerrieri, F. J. & d'Ettorre, P. (2012). Learning and perceptual similarity among cuticular hydrocarbons in ants. Journal of Insect Physiology 58, 138-146.
Bossert, S., Murray, E. A., Almeida, E. A. B., Brady, S. G., Blaimer, B. B. & Danforth, B. N. (2019). Combining transcriptomes and ultraconserved elements to illuminate the phylogeny of Apidae. Molecular Phylogenetics and Evolution 130, 121-131.
Boulton, R. A. & Field, J. (2022). Sensory plasticity in a socially plastic bee. Journal of Evolutionary Biology 35, 1218-1228.
Brand, P. & Ramírez, S. R. (2017). The evolutionary dynamics of the odorant receptor gene family in corbiculate bees. Genome Biology and Evolution 9, 2023-2036.
Brandstaetter, A. S. & Kleineidam, C. J. (2011). Distributed representation of social odors indicates parallel processing in the antennal lobe of ants. Journal of Neurophysiology 106, 2437-2449.
Brandstaetter, A. S., Rössler, W. & Kleineidam, C. J. (2011). Friends and foes from an ant brain's point of view - neuronal correlates of colony odors in a social insect. PLoS One 6, e21383.
Branstetter, M. G., Danforth, B. N., Pitts, J. P., Faircloth, B. C., Ward, P. S., Buffington, M. L., Gates, M. W., Kula, R. R. & Brady, S. G. (2017). Phylogenomic insights into the evolution of stinging wasps and the origins of ants and bees. Current Biology 27, 1019-1025.
Butterwick, J. A., del Mármol, J., Kim, K. H., Kahlson, M. A., Rogow, J. A., Walz, T. & Ruta, V. (2018). Cryo-EM structure of the insect olfactory receptor Orco. Nature 560, 447-452.
Carcaud, J., Giurfa, M. & Sandoz, J.-C. (2018). Differential processing by two olfactory subsystems in the honeybee brain. Neuroscience 374, 33-48.
Castillo, R., Wurdack, M., Pauli, T., Keller, A., Feldhaar, H., Polidori, C., Niehuis, O. & Schmitt, T. (2022). Evidence for a chemical arms race between cuckoo wasps of the genus Hedychrum and their distantly related host apoid wasps. BMC Ecology and Evolution 22, 138.
Cervo, R., Cini, A. & Turillazz, S. (2015). Visual recognition in social wasps: the knowns and the unknowns. In Social Recognition in Invertebrates (eds T. Aquiloni and E. Tricarico). Springer, Cham.
Châline, N., Sandoz, J.-C., Martin, S. J., Ratnieks, F. L. W. & Jones, G. R. (2005). Learning and discrimination of individual cuticular hydrocarbons by honeybees (Apis mellifera). Chemical Senses 30, 327-335.
Chung, H. & Carroll, S. B. (2015). Wax, sex and the origin of species: dual roles of insect cuticular hydrocarbons in adaptation and mating. BioEssays 37, 822-830.
Cini, A., Cappa, F., Pepiciello, I., Platania, L., Dapporto, L. & Cervo, R. (2019). Sight in a clique, scent in society: plasticity in the use of nestmate recognition cues along colony development in the social wasp Polistes dominula. Frontiers in Ecology and Evolution 7, 444.
Coto, Z. N. & Traniello, J. F. A. (2021). Brain size, metabolism, and social evolution. Frontiers in Physiology 12, 612865.
Couto, A., Alenius, M. & Dickson, B. J. (2005). Molecular, anatomical, and functional organization of the Drosophila olfactory system. Current Biology 15, 1535-1547.
Couto, A., Arnold, G., Ai, H. & Sandoz, J.-C. (2021). Interspecific variation of antennal lobe composition among four hornet species. Scientific Reports 11, 20883.
Couto, A., Lapeyre, B., Thiéry, D. & Sandoz, J.-C. (2016). Olfactory pathway of the hornet Vespa velutina: new insights into the evolution of the hymenopteran antennal lobe. Journal of Comparative Neurology 524, 2335-2359.
Couto, A., Mitra, A., Thiéry, D., Marion-Poll, F. & Sandoz, J.-C. (2017). Hornets have it: a conserved olfactory subsystem for social recognition in Hymenoptera? Frontiers in Neuroanatomy 11, 1-12.
Couto, A., Young, F. J., Atzeni, D., Marty, S., Melo-Flórez, L., Hebberecht, L., Monllor, M., Neal, C., Cicconardi, F., McMillan, W. O. & Montgomery, S. H. (2023). Rapid expansion and visual specialization of learning and memory centers in Heliconiini butterflies. Nature Communications 14, 4024.
Crozier, R. H. (1987). Genetic aspects of kin recognition: concepts, models, and synthesis. In Kin Recognition in Animals (eds D. J. C. Fletcher and C. D. Mitchener), pp. 55-73. Wiley, New York.
Cuvier, G. (1831). Of the Intellectual Functions of Animals. In The Animal Kingdom Arranged in Conformity with its Organization (Volume 1, ed. H. McMurtrie), pp. 25-29. Carvill, New York.
d'Ettorre, P., Deisig, N. & Sandoz, J.-C. (2017). Decoding ants' olfactory system sheds light on the evolution of social communication. Proceedings of the National Academy of Sciences of the United States of America 114, 8911-8913.
da Silva, J. (2021). Life history and the transitions to eusociality in the Hymenoptera. Frontiers in Ecology and Evolution 9, 1-20.
Dacks, A. M., Christensen, T. A. & Hildebrand, J. G. (2006). Phylogeny of a serotonin-immunoreactive neuron in the primary olfactory center of the insect brain. Journal of Comparative Neurology 498, 727-746.
Dacks, A. M., Reisenman, C. E., Paulk, A. C. & Nighorn, A. J. (2010). Histamine-immunoreactive local neurons in the antennal lobes of the Hymenoptera. Journal of Comparative Neurology 518, 2917-2933.
Dani, F. R., Foster, K. R., Zacchi, F., Seppä, P., Massolo, A., Carelli, A., Arévalo, E., Queller, D. C., Strassmann, J. E. & Turillazzi, S. (2004). Can cuticular lipids provide sufficient information for within-colony nepotism in wasps? Proceedings of the Royal Society of London Series B: Biological Sciences 271, 745-753.
Dani, F. R., Jones, G. R., Corsi, S., Beard, R., Pradella, D. & Turillazzi, S. (2005). Nestmate recognition cues in the honey bee: differential importance of cuticular alkanes and alkenes. Chemical Senses 30, 477-489.
Dani, F. R., Jones, G. R., Destri, S., Spencer, S. H. & Turillazzi, S. (2001). Deciphering the recognition signature within the cuticular chemical profile of paper wasps. Animal Behaviour 62, 165-171.
Darwin, C. (1876). Instinct - objections to the theory of natural selection as applied to Instincts: neuter and sterile insects. In The Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, pp. 227-233. John Murray, London.
Das Chakraborty, S. & Sachse, S. (2021). Olfactory processing in the lateral horn of Drosophila. Cell and Tissue Research 383, 113-123.
Deisig, N., Giurfa, M. & Sandoz, J. C. (2010). Antennal lobe processing increases separability of odor mixture representations in the honeybee. Journal of Neurophysiology 103, 2185-2194.
del Mármol, J., Yedlin, M. A. & Ruta, V. (2021). The structural basis of odorant recognition in insect olfactory receptors. Nature 597, 126-131.
Devaud, J.-M., Papouin, T., Carcaud, J., Sandoz, J.-C., Grünewald, B. & Giurfa, M. (2015). Neural substrate for higher-order learning in an insect: mushroom bodies are necessary for configural discriminations. Proceedings of the National Academy of Sciences of the United States of America 112, 5854-5862.
di Mauro, G., Perez, M., Lorenzi, M. C., Guerrieri, F. J., Millar, J. G. & d'Ettorre, P. (2015). Ants discriminate between different hydrocarbon concentrations. Frontiers in Ecology and Evolution 3, 133.
Dolan, M.-J., Frechter, S., Bates, A. S., Dan, C., Huoviala, P., Roberts, R. J. V., Schlegel, P., Dhawan, S., Tabano, R., Dionne, H., Christoforou, C., Close, K., Sutcliffe, B., Giuliani, B., Li, F., et al. (2019). Neurogenetic dissection of the Drosophila lateral horn reveals major outputs, diverse behavioural functions, and interactions with the mushroom body. eLife 8, e43079.
Dujardin, F. (1850). Mémoire sur le système nerveux des insectes. Annales des sciences naturelles Zoologie 14, 195-206.
Dunbar, R. I. M. & Shultz, S. (2007). Evolution in the social brain. Science 317, 1344-1347.
Ebrahim, S. A. M., Dweck, H. K. M., Stökl, J., Hofferberth, J. E., Trona, F., Weniger, K., Rybak, J., Seki, Y., Stensmyr, M. C., Sachse, S., Hansson, B. S. & Knaden, M. (2015). Drosophila avoids parasitoids by sensing their semiochemicals via a dedicated olfactory circuit. PLoS Biology 13, e1002318.
Ehmer, B. & Gronenberg, W. (2002). Segregation of visual input to the mushroom bodies in the honeybee (Apis mellifera). Journal of Comparative Neurology 451, 362-373.
Ehmer, B. & Hoy, R. (2000). Mushroom bodies of vespid wasps. Journal of Comparative Neurology 416, 93-100.
Elgar, M. A. & Riehl, C. (2021). Editorial: mechanisms of communication and recognition in social evolution. Frontiers in Ecology and Evolution 8, 625831.
Engsontia, P., Sangket, U., Robertson, H. M. & Satasook, C. (2015). Diversification of the ant odorant receptor gene family and positive selection on candidate cuticular hydrocarbon receptors. BMC Research Notes 8, 380.
Espinas, A. V. (1877). Des sociétés animales: étude de psychologie comparée. G. Baillière et cie, Paris.
Fahrbach, S. E. (2006). Structure of the mushroom bodies of the insect brain. Annual Review of Entomology 51, 209-232.
Farris, S. M. (2005). Evolution of insect mushroom bodies: old clues, new insights. Arthropod Structure & Development 34, 211-234.
Farris, S. M. (2013). Evolution of complex higher brain centers and behaviors: behavioral correlates of mushroom body elaboration in insects. Brain, Behavior and Evolution 82, 9-18.
Farris, S. M. (2016). Insect societies and the social brain. Current Opinion in Insect Science 15, 1-8.
Farris, S. M. & Roberts, N. S. (2005). Coevolution of generalist feeding ecologies and gyrencephalic mushroom bodies in insects. Proceedings of the National Academy of Sciences of the United States of America 102, 17394-17399.
Farris, S. M. & Schulmeister, S. (2011). Parasitoidism, not sociality, is associated with the evolution of elaborate mushroom bodies in the brains of hymenopteran insects. Proceedings of the Royal Society B: Biological Sciences 278, 940-951.
Ferguson, S. T., Park, K. Y., Ruff, A. A., Bakis, I. & Zwiebel, L. J. (2020). Odor coding of nestmate recognition in the eusocial ant Camponotus floridanus. Journal of Experimental Biology 223, jeb215400.
Forbes, A. A., Bagley, R. K., Beer, M. A., Hippee, A. C. & Widmayer, H. A. (2018). Quantifying the unquantifiable: why Hymenoptera, not Coleoptera, is the most speciose animal order. BMC Ecology 18, 1-11.
Foster, K. R., Wenseleers, T. & Ratnieks, F. L. W. (2006). Kin selection is the key to altruism. Trends in Ecology & Evolution 21, 57-60.
Foster, R. L. (1992). Nestmate recognition as an inbreeding avoidance mechanism in bumble bees (Hymenoptera: Apidae). Journal of the Kansas Entomological Society 65, 238-243.
Gamboa, G. J., Reeve, H. K. & Pfennig, D. W. (1986). The evolution and ontogeny of nestmate recognition in social wasps. Annual Review of Entomology 31, 431-454.
Gellert, H. R., Halley, D. C., Sieb, Z. J., Smith, J. C. & Pask, G. M. (2022). Microstructures at the distal tip of ant chemosensory sensilla. Scientific Reports 12, 19328.
Gibbs, A. G. & Rajpurohit, S. (2010). Cuticular lipids and water balance. In Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology (eds A.-G. Bagnères and G. J. Blomquist), pp. 100-120. Cambridge University Press, Cambridge.
Ginzel, M. D. (2010). Hydrocarbons as contact pheromones of longhorned beetles (Coleoptera: Cerambycidae). In Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology (eds A.-G. Bagnères and G. J. Blomquist), pp. 375-389. Cambridge University Press, Cambridge.
Godfrey, R. K. & Gronenberg, W. (2019). Brain evolution in social insects: advocating for the comparative approach. Journal of Comparative Physiology A 205, 13-32.
Godfrey, R. K., Oberski, J. T., Allmark, T., Givens, C., Hernandez-Rivera, J. & Gronenberg, W. (2021). Olfactory system morphology suggests colony size drives trait evolution in odorous ants (Formicidae: Dolichoderinae). Frontiers in Ecology and Evolution 9, 1-16.
Grabe, V., Strutz, A., Baschwitz, A., Hansson, B. S. & Sachse, S. (2015). Digital in vivo 3D atlas of the antennal lobe of Drosophila melanogaster. Journal of Comparative Neurology 523, 530-544.
Greene, M. J. & Gordon, D. M. (2003). Cuticular hydrocarbons inform task decisions. Nature 423, 32.
Greene, M. J. & Gordon, D. M. (2007). Structural complexity of chemical recognition cues affects the perception of group membership in the ants Linephithema humile and Aphaenogaster cockerelli. Journal of Experimental Biology 210, 897-905.
Gronenberg, W. (2001). Subdivisions of hymenopteran mushroom body calyces by their afferent supply. Journal of Comparative Neurology 435, 474-489.
Gronenberg, W., Ash, L. E. & Tibbetts, E. A. (2008). Correlation between facial pattern recognition and brain composition in paper wasps. Brain, Behavior and Evolution 71, 1-14.
Guerrieri, F. J., Nehring, V., Jørgensen, C. G., Nielsen, J., Galizia, C. G. & d'Ettorre, P. (2009). Ants recognize foes and not friends. Proceedings of the Royal Society B: Biological Sciences 276, 2461-2468.
Hamilton, W. D. (1964a). The genetical evolution of social behaviour I. Journal of Theoretical Biology 7, 1-16.
Hamilton, W. D. (1964b). The genetical evolution of social behaviour II. Journal of Theoretical Biology 7, 17-52.
Hamilton, W. D. (1987). Discriminating nepotism: expectable, common, overlooked. In Kin Recognition in Animals (eds D. J. Fletcher and C. D. Michener), pp. 417-437. John Wiley & Sons, New York.
Heisenberg, M. (1998). What do the mushroom bodies do for the insect brain? An introduction. Learning & Memory 5, 1-10.
Heisenberg, M. (2003). Mushroom body memoir: from maps to models. Nature Reviews Neuroscience 4, 266-275.
Hepper, P. G. (1986). Kin recognition: functions and mechanisms, a review. Biological Reviews 61, 63-93.
Herbers, J. M. (2009). Darwin's ‘one special difficulty’: celebrating Darwin 200. Biology Letters 5, 214-217.
Herre, M., Goldman, O. V., Lu, T.-C., Caballero-Vidal, G., Qi, Y., Gilbert, Z. N., Gong, Z., Morita, T., Rahiel, S., Ghaninia, M., Ignell, R., Matthews, B. J., Li, H., Vosshall, L. B. & Younger, M. A. (2022). Non-canonical odor coding in the mosquito. Cell 185, 3104-3123.e28.
Holman, L., Lanfear, R. & d'Ettorre, P. (2013). The evolution of queen pheromones in the ant genus Lasius. Journal of Evolutionary Biology 26, 1549-1558.
Holmes, W. G. (2004). The early history of Hamiltonian-based research on kin recognition. Annales Zoologici Fennici 41, 691-711.
Jallon, J. M. & David, J. R. (1987). Variations in cuticular hydrocarbons among the eight species of the Drosophila melanogaster subgroup. Evolution 41, 294-302.
Jefferis, G. S. X. E., Potter, C. J., Chan, A. M., Marin, E. C., Rohlfing, T., Maurer, C. R. & Luo, L. (2007). Comprehensive maps of Drosophila higher olfactory centers: spatially segregated fruit and pheromone representation. Cell 128, 1187-1203.
Jolly, A. (1966). Lemur social behavior and primate intelligence. Science 153, 501-506.
Jongepier, E., Séguret, A., Labutin, A., Feldmeyer, B., Gstöttl, C., Foitzik, S., Heinze, J. & Bornberg-Bauer, E. (2021). Convergent loss of chemoreceptors across independent origins of slave-making in ants. Molecular Biology and Evolution 39, msab305.
Kamhi, J. F., Gronenberg, W., Robson, S. K. A. & Traniello, J. F. A. (2016). Social complexity influences brain investment and neural operation costs in ants. Proceedings of the Royal Society B: Biological Sciences 283, 20161949.
Karpe, S. D., Dhingra, S., Brockmann, A. & Sowdhamini, R. (2017). Computational genome-wide survey of odorant receptors from two solitary bees Dufourea novaeangliae (Hymenoptera: Halictidae) and Habropoda laboriosa (Hymenoptera: Apidae). Scientific Reports 7, 10823.
Kather, R. & Martin, S. J. (2015). Evolution of cuticular hydrocarbons in the Hymenoptera: a meta-analysis. Journal of Chemical Ecology 41, 871-883.
Keil, T. A. (1999). Morphology and development of the peripheral olfactory organs. In Insect Olfaction (ed. B. S. Hansson), pp. 5-47. Springer, Berlin, Heidelberg.
Kelber, C., Rössler, W. & Kleineidam, C. J. (2010). Phenotypic plasticity in number of glomeruli and sensory innervation of the antennal lobe in leaf-cutting ant workers (A. vollenweideri). Developmental Neurobiology 70, 222-234.
Kelber, C., Rössler, W., Roces, F. & Kleineidam, C. J. (2009). The antennal lobes of fungus-growing ants (Attini): neuroanatomical traits and evolutionary trends. Brain, Behavior and Evolution 73, 273-284.
Keller, L. & Chapuisat, M. (2017). Eusociality and cooperation. In Encyclopedia of Life Sciences, pp. 1-7. John Wiley & Sons Ltd, Chichester.
Kenyon, F. C. (1896a). The brain of the bee. A preliminary contribution to the morphology of the nervous system of the arthropoda. Journal of Comparative Neurology 6, 133-210.
Kenyon, F. C. (1896b). The meaning and structure of the so-called ‘mushroom bodies' of the hexapod brain. The American Naturalist 30, 643-650.
Kinoshita, M., Shimohigasshi, M., Tominaga, Y., Arikawa, K. & Homberg, U. (2015). Topographically distinct visual and olfactory inputs to the mushroom body in the Swallowtail butterfly, Papilio xuthus. Journal of Comparative Neurology 523, 162-182.
Kocher, S. D. & Paxton, R. J. (2014). Comparative methods offer powerful insights into social evolution in bees. Apidologie 45, 289-305.
Kropf, J., Kelber, C., Bieringer, K. & Rössler, W. (2014). Olfactory subsystems in the honeybee: sensory supply and sex specificity. Cell and Tissue Research 357, 583-595.
Larsson, M. C., Domingos, A. I., Jones, W. D., Chiappe, M. E., Amrein, H. & Vosshall, L. B. (2004). Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43, 703-714.
Legan, A. W., Jernigan, C. M., Miller, S. E., Fuchs, M. F. & Sheehan, M. J. (2021). Expansion and accelerated evolution of 9-exon odorant receptors in Polistes paper wasps. Molecular Biology and Evolution 38, 3832-3846.
Leonhardt, S. D., Menzel, F., Nehring, V. & Schmitt, T. (2016). Ecology and evolution of communication in social insects. Cell 164, 1277-1287.
Lihoreau, M., Latty, T. & Chittka, L. (2012). An exploration of the social brain hypothesis in insects. Frontiers in Physiology 3, 442.
Lihoreau, M. & Rivault, C. (2008). Kin recognition via cuticular hydrocarbons shapes cockroach social life. Behavioral Ecology 20, 46-53.
Lihoreau, M., Zimmer, C. & Rivault, C. (2007). Kin recognition and incest avoidance in a group-living insect. Behavioral Ecology 18, 880-887.
Mair, M. M., Kmezic, V., Huber, S., Pannebakker, B. A. & Ruther, J. (2017). The chemical basis of mate recognition in two parasitoid wasp species of the genus Nasonia. Entomologia Experimentalis et Applicata 164, 1-15.
Martin, S. & Drijfhout, F. (2009). A review of ant cuticular hydrocarbons. Journal of Chemical Ecology 35, 1151.
Martin, S. J., Vitikainen, E., Helanterä, H. & Drijfhout, F. P. (2008). Chemical basis of nest-mate discrimination in the ant Formica exsecta. Proceedings of the Royal Society B: Biological Sciences 275, 1271-1278.
Masson, C. & Strambi, C. (1977). Sensory antennal organization in an ant and a wasp. Journal of Neurobiology 8, 537-548.
Maynard Smith, J. & Szathmary, E. (1997). The Major Transitions in Evolution. Oxford University Press, Oxford.
McKenzie, S. K., Fetter-Pruneda, I., Ruta, V. & Kronauer, D. J. C. (2016). Transcriptomics and neuroanatomy of the clonal raider ant implicate an expanded clade of odorant receptors in chemical communication. Proceedings of the National Academy of Sciences of the United States of America 113, 14091-14096.
Menzel, F., Blaimer, B. B. & Schmitt, T. (2017). How do cuticular hydrocarbons evolve? Physiological constraints and climatic and biotic selection pressures act on a complex functional trait. Proceedings of the Royal Society B: Biological Sciences 284, 20161727.
Montgomery, S. H., Merrill, R. M. & Ott, S. R. (2016). Brain composition in Heliconius butterflies, posteclosion growth and experience-dependent neuropil plasticity. Journal of Comparative Neurology 524, 1747-1769.
Nakanishi, A., Nishino, H., Watanabe, H., Yokohari, F. & Nishikawa, M. (2009). Sex-specific antennal sensory system in the ant Camponotus japonicus: structure and distribution of sensilla on the flagellum. Cell and Tissue Research 338, 79-97.
Nakanishi, A., Nishino, H., Watanabe, H., Yokohari, F. & Nishikawa, M. (2010). Sex-specific antennal sensory system in the ant Camponotus japonicus: glomerular organizations of antennal lobes. Journal of Comparative Neurology 518, 2186-2201.
Nehring, V., Dani, F. R., Calamai, L., Turillazzi, S., Bohn, H., Klass, K.-D. & d'Ettorre, P. (2016). Chemical disguise of myrmecophilous cockroaches and its implications for understanding nestmate recognition mechanisms in leaf-cutting ants. BMC Ecology 16, 35.
Nehring, V. & Steiger, S. (2018). Sociality and communicative complexity: insights from the other insect societies. Current Opinion in Insect Science 28, 19-25.
Neupert, S., Hornung, M., Grenwille Millar, J. & Kleineidam, C. J. (2018). Learning distinct chemical labels of nestmates in ants. Frontiers in Behavioral Neuroscience 12, 191.
Ng, R., Wu, S.-T. & Su, C.-Y. (2020). Neuronal compartmentalization: a means to integrate sensory input at the earliest stage of information processing? BioEssays 42, 2000026.
Nishikawa, M., Nishino, H., Misaka, Y., Kubota, M., Tsuji, E., Satoji, Y., Ozaki, M. & Yokohari, F. (2008). Sexual dimorphism in the antennal lobe of the ant Camponotus japonicus. Zoological Science 25, 195-204.
Nishikawa, M., Watanabe, H. & Yokohari, F. (2012). Higher brain centers for social tasks in worker ants, Camponotus japonicus. Journal of Comparative Neurology 520, 1584-1598.
Nishino, H., Iwasaki, M., Yasuyama, K., Hongo, H., Watanabe, H. & Mizunami, M. (2012). Visual and olfactory input segregation in the mushroom body calyces in a basal neopteran, the American cockroach. Arthropod Structure & Development 41, 3-16.
Norton, W. N. & Vinson, S. B. (1974). Antennal sensilla of three parasitic Hymenoptera. International Journal of Insect Morphology and Embryology 3, 305-316.
Nowak, M. A. (2006). Five rules for the evolution of cooperation. Science 314, 1560-1563.
O'Donnell, S., Bulova, S. J., DeLeon, S., Khodak, P., Miller, S. & Sulger, E. (2015). Distributed cognition and social brains: reductions in mushroom body investment accompanied the origins of sociality in wasps (Hymenoptera: Vespidae). Proceedings of the Royal Society B: Biological Sciences 282, 20150791.
O'Donnell, S., Bulova, S., DeLeon, S., Barrett, M. & Fiocca, K. (2019). Brain structure differences between solitary and social wasp species are independent of body size allometry. Journal of Comparative Physiology A 205, 911-916.
Obiero, G. F., Pauli, T., Geuverink, E., Veenendaal, R., Niehuis, O. & Große-Wilde, E. (2021). Chemoreceptor diversity in apoid wasps and its reduction during the evolution of the pollen-collecting lifestyle of bees (Hymenoptera: Apoidea). Genome Biology and Evolution 13, evaa269.
Oi, C. A., Van Oystaeyen, A., Caliari Oliveira, R., Millar, J. G., Verstrepen, K. J., van Zweden, J. S. & Wenseleers, T. (2015). Dual effect of wasp queen pheromone in regulating insect sociality. Current Biology 25, 1638-1640.
Olsen, S. R. & Wilson, R. I. (2008). Lateral presynaptic inhibition mediates gain control in an olfactory circuit. Nature 452, 956-960.
Oppelt, A., Spitzenpfeil, N., Kroiss, J. & Heinze, J. (2008). The significance of intercolonial variation of cuticular hydrocarbons for inbreeding avoidance in ant sexuals. Animal Behaviour 76, 1029-1034.
Ozaki, M. & Hefetz, A. (2014). Neural mechanisms and information processing in recognition systems. Insects 5, 722-741.
Ozaki, M., Wada-Katsumata, A., Fujikawa, K., Iwasaki, M., Yokohari, F., Satoji, Y., Nisimura, T. & Yamaoka, R. (2005). Ant nestmate and non-nestmate discrimination by a chemosensory sensillum. Science 309, 311-314.
Pahlke, S., Seid, M. A., Jaumann, S. & Smith, A. (2020). The loss of sociality is accompanied by reduced neural investment in mushroom body volume in the sweat bee Augochlora pura (Hymenoptera: Halictidae). Annals of the Entomological Society of America 114, 637-642.
Pask, G. M., Slone, J. D., Millar, J. G., Das, P., Moreira, J. A., Zhou, X., Bello, J., Berger, S. L., Bonasio, R., Desplan, C., Reinberg, D., Liebig, J., Zwiebel, L. J. & Ray, A. (2017). Specialized odorant receptors in social insects that detect cuticular hydrocarbon cues and candidate pheromones. Nature Communications 8, 297.
Pelz, D., Roeske, T., Syed, Z., Bruyne, M. d. & Galizia, C. G. (2006). The molecular receptive range of an olfactory receptor in vivo (Drosophila melanogaster Or22a). Journal of Neurobiology 66, 1544-1563.
Penn, D. J. & Frommen, J. G. (2010). Kin recognition: an overview of conceptual issues, mechanisms and evolutionary theory. In Animal Behaviour: Evolution and Mechanisms (ed. P. Kappeler), pp. 55-85. Springer Berlin Heidelberg, Berlin, Heidelberg.
Perez-Orive, J., Mazor, O., Turner, G. C., Cassenaer, S., Wilson, R. I. & Laurent, G. (2002). Oscillations and sparsening of odor representations in the mushroom body. Science 297, 359-365.
Peters, R. S., Krogmann, L., Mayer, C., Donath, A., Gunkel, S., Meusemann, K., Kozlov, A., Podsiadlowski, L., Petersen, M., Lanfear, R., Diez, P. A., Heraty, J., Kjer, K. M., Klopfstein, S., Meier, R., et al. (2017). Evolutionary history of the Hymenoptera. Current Biology 27, 1013-1018.
Piekarski, P. K., Carpenter, J. M., Lemmon, A. R., Moriarty Lemmon, E. & Sharanowski, B. J. (2018). Phylogenomic evidence overturns current conceptions of social evolution in wasps (Vespidae). Molecular Biology and Evolution 35, 2097-2109.
Quiñones, A. E. & Pen, I. (2017). A unified model of Hymenopteran preadaptations that trigger the evolutionary transition to eusociality. Nature Communications 8, 15920.
Ratnieks, F. L. W., Foster, K. R. & Wenseleers, T. (2006). Conflict resolution in insect societies. Annual Review of Entomology 51, 581-608.
Ratnieks, F. L. W., Foster, K. R. & Wenseleers, T. (2011). Darwin's special difficulty: the evolution of ‘neuter insects’ and current theory. Behavioral Ecology and Sociobiology 65, 481-492.
Rehder, V., Bicker, G. & Hammer, M. (1987). Serotonin-immunoreactive neurons in the antennal lobes and suboesophageal ganglion of the honeybee. Cell and Tissue Research 247, 59-66.
Riveros, A. J., Seid, M. A. & Wcislo, W. T. (2012). Evolution of brain size in class-based societies of fungus-growing ants (Attini). Animal Behaviour 83, 1043-1049.
Rosset, H., Schwander, T. & Chapuisat, M. (2007). Nestmate recognition and levels of aggression are not altered by changes in genetic diversity in a socially polymorphic ant. Animal Behaviour 74, 951-956.
Rössler, W. & Zube, C. (2011). Dual olfactory pathway in Hymenoptera: evolutionary insights from comparative studies. Arthropod Structure & Development 40, 349-357.
Roussel, E., Carcaud, J., Combe, M., Giurfa, M. & Sandoz, J.-C. (2014). Olfactory coding in the honeybee lateral horn. Current Biology 24, 561-567.
Rubenstein, D. R. & Abbot, P. (2017). Comparative social evolution. Cambridge University Press, Cambridge.
Ruther, J., Sieben, S. & Schricker, B. (2002). Nestmate recognition in social wasps: manipulation of hydrocarbon profiles induces aggression in the European hornet. Naturwissenschaften 89, 111-114.
Rybak, J. & Menzel, R. (1993). Anatomy of the mushroom bodies in the honey bee brain: the neuronal connections of the alpha-lobe. Journal of Comparative Neurology 334, 444-465.
Rytz, R., Croset, V. & Benton, R. (2013). Ionotropic receptors (IRs): chemosensory ionotropic glutamate receptors in Drosophila and beyond. Insect Biochemistry and Molecular Biology 43, 888-897.
Sachs, J. L., Mueller, U. G., Wilcox, T. P. & Bull, J. J. (2004). The evolution of cooperation. The Quarterly Review of Biology 79, 135-160.
Sachse, S. & Galizia, C. G. (2002). Role of inhibition for temporal and spatial odor representation in olfactory output neurons: a calcium imaging study. Journal of Neurophysiology 87, 1106-1117.
Sadd, B. M., Barribeau, S. M., Bloch, G., de Graaf, D. C., Dearden, P., Elsik, C. G., Gadau, J., Grimmelikhuijzen, C. J. P., Hasselmann, M., Lozier, J. D., Robertson, H. M., Smagghe, G., Stolle, E., Van Vaerenbergh, M., Waterhouse, R. M., et al. (2015). The genomes of two key bumblebee species with primitive eusocial organization. Genome Biology 16, 76.
Sann, M., Niehuis, O., Peters, R. S., Mayer, C., Kozlov, A., Podsiadlowski, L., Bank, S., Meusemann, K., Misof, B., Bleidorn, C. & Ohl, M. (2018). Phylogenomic analysis of Apoidea sheds new light on the sister group of bees. BMC Evolutionary Biology 18, 71.
Sato, K., Pellegrino, M., Nakagawa, T., Nakagawa, T., Vosshall, L. B. & Touhara, K. (2008). Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452, 1002-1006.
Sayol, F., Collado, M. Á., Garcia-Porta, J., Seid, M. A., Gibbs, J., Agorreta, A., San Mauro, D., Raemakers, I., Sol, D. & Bartomeus, I. (2020). Feeding specialization and longer generation time are associated with relatively larger brains in bees. Proceedings of the Royal Society B: Biological Sciences 287, 20200762.
Shahandeh, M. P., Pischedda, A. & Turner, T. L. (2018). Male mate choice via cuticular hydrocarbon pheromones drives reproductive isolation between Drosophila species. Evolution 72, 123-135.
Sharma, K. R., Enzmann, B. L., Schmidt, Y., Moore, D., Jones, G. R., Parker, J., Berger, S. L., Reinberg, D., Zwiebel, L. J., Breit, B., Liebig, J. & Ray, A. (2015). Cuticular hydrocarbon pheromones for social behavior and their coding in the ant antenna. Cell Reports 12, 1261-1271.
Sheehan, M. J., Miller, C. & Reeve, H. K. (2017). Identity signaling and patterns of cooperative behavior. Integrative and Comparative Biology 57, 580-588.
Silbering, A. F. & Galizia, C. G. (2007). Processing of odor mixtures in the Drosophila antennal lobe reveals both global inhibition and glomerulus-specific interactions. The Journal of Neuroscience 27, 11966-11977.
Slone, J. D., Pask, G. M., Ferguson, S. T., Millar, J. G., Berger, S. L., Reinberg, D., Liebig, J., Ray, A. & Zwiebel, L. J. (2017). Functional characterization of odorant receptors in the ponerine ant, Harpegnathos saltator. Proceedings of the National Academy of Sciences of the United States of America 114, 8586-8591.
Smith, A. A. & Liebig, J. (2017). The evolution of cuticular fertility signals in eusocial insects. Current Opinion in Insect Science 22, 79-84.
Strausfeld, N. J. (2002). Organization of the honey bee mushroom body: representation of the calyx within the vertical and gamma lobes. Journal of Comparative Neurology 450, 4-33.
Strausfeld, N. J., Hansen, L., Li, Y., Gomez, R. S. & Ito, K. (1998). Evolution, discovery, and interpretations of arthropod mushroom bodies. Learning & Memory 5, 11-37.
Strausfeld, N. J., Sinakevitch, I., Brown, S. M. & Farris, S. M. (2009). Ground plan of the insect mushroom body: functional and evolutionary implications. Journal of Comparative Neurology 513, 265-291.
Strube-Bloss, M. F. & Rössler, W. (2018). Multimodal integration and stimulus categorization in putative mushroom body output neurons of the honeybee. Royal Society Open Science 5, 171785.
Su, C.-Y., Menuz, K. & Carlson, J. R. (2009). Olfactory perception: receptors, cells, and circuits. Cell 139, 45-59.
Sundström, L. (1997). Queen acceptance and nestmate recognition in monogyne and polygyne colonies of the ant Formica truncorum. Animal Behaviour 53, 499-510.
Suzuki, H. (1975). Antennal movements induced by odour and central projection of the antennal neurones in the honey-bee. Journal of Insect Physiology 21, 831-847.
Szyszka, P., Ditzen, M., Galkin, A., Galizia, C. G. & Menzel, R. (2005). Sparsening and temporal sharpening of olfactory representations in the honeybee mushroom bodies. Journal of Neurophysiology 94, 3303-3313.
Takeichi, Y., Uebi, T., Miyazaki, N., Murata, K., Yasuyama, K., Inoue, K., Suzaki, T., Kubo, H., Kajimura, N., Takano, J., Omori, T., Yoshimura, R., Endo, Y., Hojo, M. K., Takaya, E., et al. (2018). Putative neural network within an olfactory sensory unit for nestmate and non-nestmate discrimination in the Japanese carpenter ant: the ultra-structures and mathematical simulation. Frontiers in Cellular Neuroscience 12, 310.
Tibbetts, E. A. (2002). Visual signals of individual identity in the wasp Polistes fuscatus. Proceedings of the Royal Society of London. Series B: Biological Sciences 269, 1423-1428.
Trible, W., Olivos-Cisneros, L., McKenzie, S. K., Saragosti, J., Chang, N.-C., Matthews, B. J., Oxley, P. R. & Kronauer, D. J. C. (2017). Orco mutagenesis causes loss of antennal lobe glomeruli and impaired social behavior in ants. Cell 170, 727-735.e10.
Trivers, R. & Hare, H. (1976). Haploidploidy and the evolution of the social insect. Science 191, 249-263.
Tsuji, E., Aonuma, H., Yokohari, F. & Nishikawa, M. (2007). Serotonin-immunoreactive neurons in the antennal sensory system of the brain in the carpenter ant, Camponotus japonicus. Zoological Science 24, 836-849.
Uebi, T., Sakita, T., Ikeda, R., Sakanishi, K., Tsutsumi, T., Zhang, Z., Ma, H., Matsubara, R., Matsuyama, S., Nakajima, S., Huang, R.-N., Habe, S., Hefetz, A. & Ozaki, M. (2022). Chemical identification of an active component and putative neural mechanism for repellent effect of a native ant's odor on invasive species. Frontiers in Physiology 13, 844084.
Van Oystaeyen, A., Oliveira, R. C., Holman, L., Zweden, J. S. v., Romero, C., Oi, C. A., d'Ettorre, P., Khalesi, M., Billen, J., Wäckers, F., Millar, J. G. & Wenseleers, T. (2014). Conserved class of queen pheromones stops social insect workers from reproducing. Science 343, 287-290.
van Wilgenburg, E., Felden, A., Choe, D.-H., Sulc, R., Luo, J., Shea, K. J., Elgar, M. A. & Tsutsui, N. D. (2012). Learning and discrimination of cuticular hydrocarbons in a social insect. Biology Letters 8, 17-20.
Van Zweden, J. S., Brask, J. B., Christensen, J. H., Boomsma, J. J., Linksvayer, T. A. & d'Ettorre, P. (2010). Blending of heritable recognition cues among ant nestmates creates distinct colony gestalt odours but prevents within-colony nepotism. Journal of Evolutionary Biology 23, 1498-1508.
van Zweden, J. S. & d'Ettorre, P. (2010). Nestmate recognition in social insects and the role of hydrocarbons. In Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology (eds A.-G. Bagnères and G. J. Blomquist), pp. 222-243. Cambridge University Press, Cambridge.
Vandenabeele, S. P. & Schmitt, T. (2023). Olfaction is essential for nest recognition in solitary Hymenoptera. Proceedings of the National Academy of Sciences of the United States of America 120, e2304703120.
Vosshall, L. B., Wong, A. M. & Axel, R. (2000). An olfactory sensory map in the fly brain. Cell 102, 147-159.
Waldman, B. (1987). Mechanisms of kin recognition. Journal of Theoretical Biology 128, 159-185.
Waldman, B. (1988). The ecology of kin recognition. Annual Review of Ecology and Systematics 19, 543-571.
Walther, J. R. (1983). Antennal patterns of sensilla of the Hymenoptera a complex character of phylogenetic reconstruction. Verhandlungen des Naturwissenschaftlichen Vereins in Hamburg 26, 373-392.
Watanabe, H., Ogata, S., Nodomi, N., Tateishi, K., Nishino, H., Matsubara, R., Ozaki, M. & Yokohari, F. (2023). Cuticular hydrocarbon reception by sensory neurons in basiconic sensilla of the Japanese carpenter ant. Frontiers in Cellular Neuroscience 17, 1084803.
Wenseleers, T. & van Zweden, J. S. (2017). Sensory and cognitive adaptations to social living in insect societies. Proceedings of the National Academy of Sciences of the United States of America 114, 6424-6426.
West, S. A., Cooper, G. A., Ghoul, M. B. & Griffin, A. S. (2021). Ten recent insights for our understanding of cooperation. Nature Ecology & Evolution 5, 419-430.
West, S. A., Griffin, A. S. & Gardner, A. (2007a). Evolutionary explanations for cooperation. Current Biology 17, R661-R672.
West, S. A., Griffin, A. S. & Gardner, A. (2007b). Social semantics: altruism, cooperation, mutualism, strong reciprocity and group selection. Journal of Evolutionary Biology 20, 415-432.
Wheeler, W. M. (1928). The Social Insects: Their Origin and Evolution. Kegan Paul, Trench, Trübner & Co., Ltd, London.
Wicher, D. & Miazzi, F. (2021). Functional properties of insect olfactory receptors: ionotropic receptors and odorant receptors. Cell and Tissue Research 383, 7-19.
Wicher, D., Schäfer, R., Bauernfeind, R., Stensmyr, M. C., Heller, R., Heinemann, S. H. & Hansson, B. S. (2008). Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 452, 1007-1011.
Wilson, E. O. (1971). The Insect Societies. Harvard University Press, Cambridge.
Wittwer, B., Hefetz, A., Simon, T., Murphy, L. E. K., Elgar, M. A., Pierce, N. E. & Kocher, S. D. (2017). Solitary bees reduce investment in communication compared with their social relatives. Proceedings of the National Academy of Sciences of the United States of America 114, 6569-6574.
Wyatt, T. D. (2014). Semiochemicals and social organization. In Pheromones and Animal Behavior: Chemical Signals and Signatures, pp. 126-149. Cambridge University Press, Cambridge.
Yan, H., Opachaloemphan, C., Mancini, G., Yang, H., Gallitto, M., Mlejnek, J., Leibholz, A., Haight, K., Ghaninia, M., Huo, L., Perry, M., Slone, J., Zhou, X., Traficante, M., Penick, C. A., et al. (2017). An engineered Orco mutation produces aberrant social behavior and defective neural development in ants. Cell 170, 736-747.e9.
Zacharuk, R. Y. (1980). Ultrastructure and function of insect chemosensilla. Annual Review of Entomology 25, 27-47.
Zhou, X., Rokas, A., Berger, S. L., Liebig, J., Ray, A. & Zwiebel, L. J. (2015). Chemoreceptor evolution in hymenoptera and its implications for the evolution of eusociality. Genome Biology and Evolution 7, 2407-2416.
Zhou, X., Slone, J. D., Rokas, A., Berger, S. L., Liebig, J., Ray, A., Reinberg, D. & Zwiebel, L. J. (2012). Phylogenetic and transcriptomic analysis of chemosensory receptors in a pair of divergent ant species reveals sex-specific signatures of odor coding. PLoS Genetics 8, e1002930.
Zube, C., Kleineidam, C. J., Kirschner, S., Neef, J. & Rössler, W. (2008). Organization of the olfactory pathway and odor processing in the antennal lobe of the ant Camponotus floridanus. Journal of Comparative Neurology 506, 425-441.
Zube, C. & Rössler, W. (2008). Caste- and sex-specific adaptations within the olfactory pathway in the brain of the ant Camponotus floridanus. Arthropod Structure & Development 37, 469-479.

Auteurs

Antoine Couto (A)

School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK.
Evolution, Genomes, Behaviour and Ecology (UMR 9191), IDEEV, Université Paris-Saclay, CNRS, IRD, 12 route 128, Gif-sur-Yvette, 91190, France.

Simon Marty (S)

Evolution, Genomes, Behaviour and Ecology (UMR 9191), IDEEV, Université Paris-Saclay, CNRS, IRD, 12 route 128, Gif-sur-Yvette, 91190, France.

Erika H Dawson (EH)

Laboratory of Experimental and Comparative Ethology, UR 4443 (LEEC), Université Sorbonne Paris Nord, 99 avenue J.-B. Clément, Villetaneuse, 93430, France.

Patrizia d'Ettorre (P)

Laboratory of Experimental and Comparative Ethology, UR 4443 (LEEC), Université Sorbonne Paris Nord, 99 avenue J.-B. Clément, Villetaneuse, 93430, France.
Institut Universitaire de France (IUF), 103 Boulevard Saint-Michel, Paris, 75005, France.

Jean-Christophe Sandoz (JC)

Evolution, Genomes, Behaviour and Ecology (UMR 9191), IDEEV, Université Paris-Saclay, CNRS, IRD, 12 route 128, Gif-sur-Yvette, 91190, France.

Stephen H Montgomery (SH)

School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH