Identification of new potential molecular actors related to fiber quality in flax through Omics.
cell wall
fiber
flax (Linum usitatissimum L.)
proteomics
quality
retting
transcriptomics
Journal
Frontiers in plant science
ISSN: 1664-462X
Titre abrégé: Front Plant Sci
Pays: Switzerland
ID NLM: 101568200
Informations de publication
Date de publication:
2023
2023
Historique:
received:
11
04
2023
accepted:
20
06
2023
medline:
2
8
2023
pubmed:
2
8
2023
entrez:
2
8
2023
Statut:
epublish
Résumé
One of the biggest challenges for a more widespread utilization of plant fibers is to better understand the different molecular factors underlying the variability in fineness and mechanical properties of both elementary and scutched fibers. Accordingly, we analyzed genome-wide transcription profiling from bast fiber bearing tissues of seven different flax varieties (4 spring, 2 winter fiber varieties and 1 winter linseed) and identified 1041 differentially expressed genes between varieties, of which 97 were related to cell wall metabolism. KEGG analysis highlighted a number of different enriched pathways. Subsequent statistical analysis using Partial Least-Squares Discriminant Analysis showed that 73% of the total variance was explained by the first 3 X-variates corresponding to 56 differentially expressed genes. Calculation of Pearson correlations identified 5 genes showing a strong correlation between expression and morphometric data. Two-dimensional gel proteomic analysis on the two varieties showing the most discriminant and significant differences in morphometrics revealed 1490 protein spots of which 108 showed significant differential abundance. Mass spectrometry analysis successfully identified 46 proteins representing 32 non-redundant proteins. Statistical clusterization based on the expression level of genes corresponding to the 32 proteins showed clear discrimination into three separate clusters, reflecting the variety type (spring-/winter-fiber/oil). Four of the 32 proteins were also highly correlated with morphometric features. Examination of predicted functions for the 9 (5 + 4) identified genes highlighted lipid metabolism and senescence process. Calculation of Pearson correlation coefficients between expression data and retted fiber mechanical measurements (strength and maximum force) identified 3 significantly correlated genes. The genes were predicted to be connected to cell wall dynamics, either directly (Expansin-like protein), or indirectly (NAD(P)-binding Rossmann-fold superfamily protein). Taken together, our results have allowed the identification of molecular actors potentially associated with the determination of both
Identifiants
pubmed: 37528984
doi: 10.3389/fpls.2023.1204016
pmc: PMC10390313
doi:
Types de publication
Journal Article
Langues
eng
Pagination
1204016Informations de copyright
Copyright © 2023 Chabi, Goulas, Galinousky, Blervacq, Lucau-Danila, Neutelings, Grec, Day, Chabbert, Haag, Müssig, Arribat, Planchon, Renaut and Hawkins.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Plant Mol Biol. 2010 Jul;73(4-5):379-90
pubmed: 20238146
Oecologia. 2012 May;169(1):269-79
pubmed: 22081261
Planta. 2005 Oct;222(2):234-45
pubmed: 15968509
Mol Genet Genomics. 2007 Aug;278(2):149-65
pubmed: 17503083
Theor Appl Genet. 2012 Dec;125(8):1783-95
pubmed: 22890805
Plant Physiol Biochem. 2000 Jan-Feb;38(1-2):109-24
pubmed: 11543185
New Phytol. 2021 Jul;231(2):512-515
pubmed: 33892514
BMC Plant Biol. 2017 Dec 28;17(Suppl 2):253
pubmed: 29297347
Am J Bot. 2002 Sep;89(9):1410-21
pubmed: 21665742
PLoS One. 2020 May 26;15(5):e0233493
pubmed: 32453778
Plant Mol Biol. 2017 Mar;93(4-5):431-449
pubmed: 27981388
Angew Chem Int Ed Engl. 2018 Dec 17;57(51):16665-16671
pubmed: 30370981
Plant J. 2012 Nov;72(3):461-73
pubmed: 22757964
BMC Genomics. 2021 May 22;22(1):375
pubmed: 34022792
BMC Genomics. 2010 Oct 21;11:592
pubmed: 20964859
Mol Plant. 2019 Jun 3;12(6):879-892
pubmed: 30639314
Plant Physiol. 2011 Jul;156(3):1351-63
pubmed: 21596948
Proc Natl Acad Sci U S A. 2018 Jun 5;115(23):E5419-E5428
pubmed: 29784829
Plant J. 2006 Sep;47(5):720-34
pubmed: 16923014
Plant Physiol Biochem. 2013 Dec;73:405-11
pubmed: 24220572
Ann Bot. 2008 Sep;102(3):317-30
pubmed: 18593690
Front Plant Sci. 2016 Jun 28;7:950
pubmed: 27446177
Genome Biol. 2004;5(8):R53
pubmed: 15287975
Mol Cell Proteomics. 2017 Sep;16(9):1634-1651
pubmed: 28706005
BMC Genomics. 2016 Dec 7;17(1):1002
pubmed: 27927184
Front Plant Sci. 2016 Dec 21;7:1920
pubmed: 28066475
J Exp Bot. 2012 Jun;63(10):3603-16
pubmed: 22442409
Curr Opin Plant Biol. 2008 Jun;11(3):266-77
pubmed: 18486536
Bioinformatics. 2020 Apr 15;36(8):2628-2629
pubmed: 31882993
Plant Physiol. 2012 Apr;158(4):1893-915
pubmed: 22331411
Nat Biotechnol. 1999 Oct;17(10):994-9
pubmed: 10504701
Genetika. 2011 Jan;47(1):65-75
pubmed: 21446184
Sci Rep. 2018 Oct 1;8(1):14570
pubmed: 30275452
J Proteomics. 2013 Mar 27;80:145-59
pubmed: 23318888
Plant Physiol. 2011 Jan;155(1):171-84
pubmed: 21051553
Curr Genomics. 2013 Apr;14(2):91-110
pubmed: 24082820
Eur J Biochem. 2003 Jan;270(2):190-205
pubmed: 12605670
Plant J. 2012 Jan;69(2):302-16
pubmed: 21923745
Front Genet. 2020 Nov 12;11:589881
pubmed: 33281880
Nucleic Acids Res. 2022 Jan 7;50(D1):D543-D552
pubmed: 34723319
Front Genet. 2020 Oct 27;11:581664
pubmed: 33193706
Plant J. 2004 Apr;38(2):227-43
pubmed: 15078327
Plant Physiol. 2008 Sep;148(1):436-54
pubmed: 18650403
Front Plant Sci. 2019 Jan 14;9:1982
pubmed: 30693010
Plant Sci. 2022 Oct;323:111399
pubmed: 35905894
BMC Plant Biol. 2008 Apr 30;8:52
pubmed: 18447950
Plant J. 2018 Jul;95(2):371-384
pubmed: 29681136
Plant Physiol. 2002 Nov;130(3):1172-80
pubmed: 12427984