A spatio-temporal statistical model to analyze COVID-19 spread in the USA.

Bayesian analysis Coronavirus Gibbs sampling epidemiology pandemic

Journal

Journal of applied statistics
ISSN: 0266-4763
Titre abrégé: J Appl Stat
Pays: England
ID NLM: 9883455

Informations de publication

Date de publication:
2023
Historique:
medline: 31 8 2021
pubmed: 31 8 2021
entrez: 2 8 2023
Statut: epublish

Résumé

Coronavirus pandemic has affected the whole world extensively and it is of immense importance to understand how the disease is spreading. In this work, we provide evidence of spatial dependence in the pandemic data and accordingly develop a new statistical technique that captures the spatio-temporal dependence pattern of the COVID-19 spread appropriately. The proposed model uses a separable Gaussian spatio-temporal process, in conjunction with an additive mean structure and a random error process. The model is implemented through a Bayesian framework, thereby providing a computational advantage over the classical way. We use state-level data from the United States of America in this study. We show that a quadratic trend pattern is most appropriate in this context. Interestingly, the population is found not to affect the numbers significantly, whereas the number of deaths in the previous week positively affects the spread of the disease. Residual diagnostics establish that the model is adequate enough to understand the spatio-temporal dependence pattern in the data. It is also shown to have superior predictive power than other spatial and temporal models. In fact, we show that the proposed approach can predict well for both short term (1 week) and long term (up to three months).

Identifiants

pubmed: 37529573
doi: 10.1080/02664763.2021.1970122
pii: 1970122
pmc: PMC10388825
doi:

Types de publication

Journal Article

Langues

eng

Pagination

2310-2329

Informations de copyright

© 2021 Informa UK Limited, trading as Taylor & Francis Group.

Déclaration de conflit d'intérêts

No potential conflict of interest was reported by the author(s).

Références

Chaos Solitons Fractals. 2020 Oct;139:110058
pubmed: 32834611
Sci Total Environ. 2021 Feb 1;754:142396
pubmed: 33254938
Am J Trop Med Hyg. 2020 Dec;103(6):2400-2411
pubmed: 33124541
Nonlinear Dyn. 2020;101(3):1833-1846
pubmed: 32836819
Lancet Respir Med. 2020 Sep;8(9):e70
pubmed: 32771081
BMC Infect Dis. 2020 Sep 23;20(1):700
pubmed: 32967639
Ann Epidemiol. 2020 Dec;52:54-59.e1
pubmed: 32736059
Am J Trop Med Hyg. 2020 Nov;103(5):2019-2021
pubmed: 32996443
Lancet. 2020 Feb 29;395(10225):689-697
pubmed: 32014114
J Infect Public Health. 2020 Jul;13(7):914-919
pubmed: 32546438
Int J Infect Dis. 2020 May;94:96-102
pubmed: 32251789
J Behav Exp Finance. 2021 Mar;29:100428
pubmed: 33269212
J Med Virol. 2021 Feb;93(2):595-598
pubmed: 32697350
Chaos Solitons Fractals. 2020 Sep;138:110015
pubmed: 32565625
PLoS One. 2020 Mar 31;15(3):e0230405
pubmed: 32231374
Expert Syst Appl. 2021 Mar 15;166:114077
pubmed: 33041528
J Adv Res. 2020 Mar 16;24:91-98
pubmed: 32257431
N Engl J Med. 2020 Mar 5;382(10):929-936
pubmed: 32004427
Spat Stat. 2020 Aug;38:100443
pubmed: 32292691
Spat Spatiotemporal Epidemiol. 2013 Mar;4:33-49
pubmed: 23481252
Sci Rep. 2021 Mar 8;11(1):5378
pubmed: 33686125

Auteurs

Siddharth Rawat (S)

Indian Institute of Management Bangalore, Bengaluru, India.

Soudeep Deb (S)

Indian Institute of Management Bangalore, Bengaluru, India.

Classifications MeSH