Low-cooling-rate freezing in biomolecular cryo-electron microscopy for recovery of initial frames.

beam-induced motion cooling rate cryo-EM sample preparation high temperature freezing

Journal

QRB discovery
ISSN: 2633-2892
Titre abrégé: QRB Discov
Pays: England
ID NLM: 101772102

Informations de publication

Date de publication:
2021
Historique:
received: 18 06 2021
revised: 20 08 2021
accepted: 01 09 2021
medline: 6 9 2021
pubmed: 6 9 2021
entrez: 2 8 2023
Statut: epublish

Résumé

When biological samples are first exposed to electrons in cryo-electron microcopy (cryo-EM), proteins exhibit a rapid 'burst' phase of beam-induced motion that cannot be corrected with software. This lowers the quality of the initial frames, which are the least damaged by the electrons. Hence, they are commonly excluded or down-weighted during data processing, reducing the undamaged signal and the resolution in the reconstruction. By decreasing the cooling rate during sample preparation, either with a cooling-rate gradient or by increasing the freezing temperature, we show that the quality of the initial frames for various protein and virus samples can be recovered. Incorporation of the initial frames in the reconstruction increases the resolution by an amount equivalent to using ~60% more data. Moreover, these frames preserve the high-quality cryo-EM densities of radiation-sensitive residues, which is often damaged or very weak in canonical three-dimensional reconstruction. The improved freezing conditions can be easily achieved using existing devices and enhance the overall quality of cryo-EM structures.

Identifiants

pubmed: 37529673
doi: 10.1017/qrd.2021.8
pii: S2633289221000089
pmc: PMC10392635
doi:

Types de publication

Journal Article

Langues

eng

Pagination

e11

Informations de copyright

© The Author(s) 2021.

Déclaration de conflit d'intérêts

The authors declare no conflict of interest.

Références

Methods Enzymol. 2016;579:103-24
pubmed: 27572725
J Struct Biol. 2006 Mar;153(3):241-52
pubmed: 16434212
Nature. 1984 Mar 1-7;308(5954):32-6
pubmed: 6322001
IUCrJ. 2020 Mar 26;7(Pt 3):416-421
pubmed: 32431825
J Struct Biol. 2015 Nov;192(2):216-21
pubmed: 26278980
Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):623-8
pubmed: 10639129
Microsc Microanal. 2004 Dec;10(6):790-6
pubmed: 19780321
Science. 2015 Jun 5;348(6239):1147-51
pubmed: 25953817
J Struct Biol. 2012 Mar;177(3):630-7
pubmed: 22366277
J Struct Biol. 2007 Jan;157(1):38-46
pubmed: 16859925
J Ultrastruct Res. 1976 Jun;55(3):448-56
pubmed: 933264
Ultramicroscopy. 1992 Oct;46(1-4):1-18
pubmed: 1481269
J Mol Biol. 2012 Jan 13;415(2):406-18
pubmed: 22100448
Structure. 2012 Nov 7;20(11):1823-8
pubmed: 23022349
Ultramicroscopy. 2008 Jun;108(7):698-705
pubmed: 18164549
Science. 2014 Dec 12;346(6215):1377-80
pubmed: 25504723
Microsc Microanal. 2010 Feb;16(1):43-53
pubmed: 20082728
IUCrJ. 2021 Mar 01;8(Pt 2):186-194
pubmed: 33708396
Methods Enzymol. 2016;579:51-86
pubmed: 27572723
Philos Trans R Soc Lond B Biol Sci. 1977 Mar 29;278(959):167-89
pubmed: 17872
IUCrJ. 2019 Jan 01;6(Pt 1):5-17
pubmed: 30713699
Ultramicroscopy. 1979;04(2):201-10
pubmed: 473421
J Struct Biol. 2014 Mar;185(3):418-26
pubmed: 24384117
Methods Enzymol. 2016;579:19-50
pubmed: 27572722
Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32
pubmed: 15572765
Phys Rev Lett. 2013 Jan 4;110(1):015703
pubmed: 23383808
J Struct Biol. 2019 Dec 1;208(3):107396
pubmed: 31562921
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21
pubmed: 20124702
J Struct Biol. 2015 Nov;192(2):188-95
pubmed: 26296328
Elife. 2018 Nov 09;7:
pubmed: 30412051
Nat Nanotechnol. 2012 Jun 17;7(7):459-64
pubmed: 22706697
J Struct Biol. 2008 Sep;163(3):271-6
pubmed: 18588985
Prog Biophys Mol Biol. 2020 Oct;156:3-13
pubmed: 32758492
Ultramicroscopy. 2018 Apr;187:43-49
pubmed: 29413411
J Microsc. 1987 Jan;145(Pt 1):89-96
pubmed: 3553603
Nat Methods. 2017 Apr;14(4):331-332
pubmed: 28250466
J Mol Biol. 2011 Nov 11;413(5):1028-46
pubmed: 21939668
Nat Methods. 2014 Jun;11(6):649-52
pubmed: 24747813
Q Rev Biophys. 2016 Jan;49:e13
pubmed: 27658821
Science. 2020 Oct 9;370(6513):223-226
pubmed: 33033219

Auteurs

Chunling Wu (C)

National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing 100101, P.R. China.
College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China.

Huigang Shi (H)

National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing 100101, P.R. China.
College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China.

Dongjie Zhu (D)

School of Life Sciences, University of Science and Technology of China, Hefei 230026, P.R. China.

Kelong Fan (K)

CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing 100101, P.R. China.

Xinzheng Zhang (X)

National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing 100101, P.R. China.
College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China.

Classifications MeSH