Remnant cholesterol, but not low-density lipoprotein cholesterol, is associated with intra-pancreatic fat deposition.
cardiovascular diseases
intra-pancreatic fat
lipid panel
magnetic resonance imaging
pancreas
triglyceride-rich lipoproteins
triglycerides
Journal
Diabetes, obesity & metabolism
ISSN: 1463-1326
Titre abrégé: Diabetes Obes Metab
Pays: England
ID NLM: 100883645
Informations de publication
Date de publication:
11 2023
11 2023
Historique:
revised:
10
07
2023
received:
30
04
2023
accepted:
20
07
2023
medline:
4
10
2023
pubmed:
2
8
2023
entrez:
2
8
2023
Statut:
ppublish
Résumé
To investigate the associations of components of the lipid panel (and its derivatives) with intra-pancreatic fat deposition (IPFD). All participants underwent abdominal magnetic resonance imaging on the same 3.0-Tesla scanner and IPFD was quantified. Blood samples were collected in the fasted state for analysis of lipid panel components. A series of linear regression analyses was conducted, adjusting for age, sex, ethnicity, body mass index, fasting plasma glucose, homeostatic model assessment of insulin resistance, and liver fat deposition. A total of 348 participants were included. Remnant cholesterol (P = 0.010) and triglyceride levels (P = 0.008) were positively, and high-density lipoprotein cholesterol level (P = 0.001) was negatively, associated with total IPFD in the most adjusted model. Low-density lipoprotein cholesterol and total cholesterol were not significantly associated with total IPFD. Of the lipid panel components investigated, remnant cholesterol explained the greatest proportion (9.9%) of the variance in total IPFD. Components of the lipid panel have different associations with IPFD. This may open up new opportunities for improving outcomes in people at high risk for cardiovascular diseases (who have normal low-density lipoprotein cholesterol) by reducing IPFD.
Substances chimiques
Cholesterol, LDL
0
Cholesterol
97C5T2UQ7J
Triglycerides
0
Cholesterol, HDL
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
3337-3346Informations de copyright
© 2023 John Wiley & Sons Ltd.
Références
Lindstrom M, DeCleene N, Dorsey H, et al. Global burden of cardiovascular diseases and risks collaboration, 1990-2021. J Am Coll Cardiol. 2022;80(25):2372-2425.
Ng AC, Delgado V, Borlaug BA, Bax JJ. Diabesity: the combined burden of obesity and diabetes on heart disease and the role of imaging. Nat Rev Cardiol. 2021;18(4):291-304.
Deprince A, Haas JT, Staels B. Dysregulated lipid metabolism links NAFLD to cardiovascular disease. Mol Metab. 2020;42:101092.
Alisi A, Cianfarani S, Manco M, Agostoni C, Nobili V. Non-alcoholic fatty liver disease and metabolic syndrome in adolescents: pathogenetic role of genetic background and intrauterine environment. Ann Med. 2012;44(1):29-40.
Taylor R, Al-Mrabeh A, Zhyzhneuskaya S, et al. Remission of human type 2 diabetes requires decrease in liver and pancreas fat content but is dependent upon capacity for β cell recovery. Cell Metab. 2018;28(4):547-556.
Taylor R. Pathogenesis of type 2 diabetes: tracing the reverse route from cure to cause. Diabetologia. 2008;51(10):1781-1789.
Petrov MS, Taylor R. Intra-pancreatic fat deposition: bringing hidden fat to the fore. Nat Rev Gastroenterol Hepatol. 2022;19(3):153-168.
Singh RG, Yoon HD, Wu LM, Lu J, Plank LD, Petrov MS. Ectopic fat accumulation in the pancreas and its clinical relevance: a systematic review, meta-analysis, and meta-regression. Metabolism. 2017;69:1-13.
Kim MK, Chun HJ, Park JH, et al. The association between ectopic fat in the pancreas and subclinical atherosclerosis in type 2 diabetes. Diabetes Res Clin Pract. 2014;106(3):590-596.
Sun P, Fan C, Wang R, et al. Computed tomography-estimated pancreatic steatosis is associated with carotid plaque in type 2 diabetes mellitus patients: a cross-sectional study from China. Diabetes Metab Syndr Obes. 2021;14:1329-1337.
Stamm BH. Incidence and diagnostic significance of minor pathologic changes in the adult pancreas at autopsy: a systematic study of 112 autopsies in patients without known pancreatic disease. Hum Pathol. 1984;15(7):677-683.
Singh RG, Yoon HD, Poppitt SD, Plank LD, Petrov MS. Ectopic fat accumulation in the pancreas and its biomarkers: a systematic review and meta-analysis. Diabetes Metab Res Rev. 2017;33(8):e2918.
Sampson M, Ling C, Sun Q, et al. A new equation for calculation of low-density lipoprotein cholesterol in patients with normolipidemia and/or hypertriglyceridemia. JAMA Cardiol. 2020;5(5):540-548.
Packard CJ. Remnants, LDL, and the quantification of lipoprotein-associated risk in atherosclerotic cardiovascular disease. Curr Atheroscler Rep. 2022;24(3):133-142.
Vargas-Vázquez A, Bello-Chavolla OY, Antonio-Villa NE, Mehta R, Cruz-Bautista I, Aguilar-Salinas CA. Comparative assessment of LDL-C and VLDL-C estimation in familial combined hyperlipidemia using Sampson's, Martin's and Friedewald's equations. Lipids Health Dis. 2021;20(1):46.
Piani F, Cicero AFG, Borghi C, D'Addato S. Is the 2020 Sampson equation the best formula for LDL-C estimation? Eur J Intern Med. 2021;83:99-101.
Grundy SM, Stone NJ, Bailey AL, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol. J Am Coll Cardiol. 2019;73(24):e285-e350.
Chait A, Ginsberg HN, Vaisar T, Heinecke JW, Goldberg IJ, Bornfeldt KE. Remnants of the triglyceride-rich lipoproteins, diabetes, and cardiovascular disease. Diabetes. 2020;69(4):508-516.
Lin A, Nerlekar N, Rajagopalan A, et al. Remnant cholesterol and coronary atherosclerotic plaque burden assessed by computed tomography coronary angiography. Atherosclerosis. 2019;284:24-30.
Varbo A, Nordestgaard BG. Directly measured vs. calculated remnant cholesterol identifies additional overlooked individuals in the general population at higher risk of myocardial infarction. Eur Heart J. 2021;42(47):4833-4843.
Petrov MS. Fatty change of the pancreas: the Pandora's box of pancreatology. Lancet Gastroenterol Hepatol. 2023;8(7):671-682.
Ko J, Sequeira IR, Skudder-Hill L, Cho J, Poppitt SD, Petrov MS. Metabolic traits affecting the relationship between liver fat and intra-pancreatic fat: a mediation analysis. Diabetologia. 2023;66:190-200.
Kühn JP, Berthold F, Mayerle J, et al. Pancreatic steatosis demonstrated at MR imaging in the general population: clinical relevance. Radiology. 2015;276(1):129-136.
Triay Bagur A, Aljabar P, Ridgway GR, Brady M, Bulte DP. Pancreas MRI segmentation into head, body, and tail enables regional quantitative analysis of heterogeneous disease. J Magn Reson Imaging. 2022;56(4):997-1008.
Skudder-Hill L, Sequeira IR, Cho J, Ko J, Poppitt SD, Petrov MS. Fat distribution within the pancreas according to diabetes status and insulin traits. Diabetes. 2022;71(6):1182-1192.
Sequeira IR, Yip WC, Lu LW, et al. Pancreas fat, an early marker of metabolic risk? A magnetic resonance study of Chinese and Caucasian women: TOFI_Asia study. Front Physiol. 2022;13:819606.
Al-Mrabeh A, Hollingsworth KG, Steven S, Tiniakos D, Taylor R. Quantification of intrapancreatic fat in type 2 diabetes by MRI. PloS One. 2017;12(4):e0174660.
DeSouza SV, Yoon HD, Singh RG, Petrov MS. Quantitative determination of pancreas size using anatomical landmarks and its clinical relevance: a systematic literature review. Clin Anat. 2018;31:913-926.
Ko J, Skudder-Hill L, Tarrant C, Kimita W, Bharmal SH, Petrov MS. Intra-pancreatic fat deposition as a modifier of the relationship between habitual dietary fat intake and insulin resistance. Clin Nutr. 2021;40(7):4730-4737.
Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412-419.
Nordestgaard BG, Varbo A. Triglycerides and cardiovascular disease. Lancet. 2014;384(9943):626-635.
Xie G, Zhong Y, Yang S, Zou Y. Remnant cholesterol is an independent predictor of new-onset diabetes: a single-center cohort study. Diabetes Metab Syndr Obes. 2021;14:4735-4745.
Langsted A, Madsen CM, Nordestgaard BG. Contribution of remnant cholesterol to cardiovascular risk. J Intern Med. 2020;288(1):116-127.
Varbo A, Benn M, Tybjaerg-Hansen A, Jørgensen AB, Frikke-Schmidt R, Nordestgaard BG. Remnant cholesterol as a causal risk factor for ischemic heart disease. J Am Coll Cardiol. 2013;61(4):427-436.
Varga A, Hegele RA. Triglyceride-rich particles: new actors in valvular aortic stenosis. Eur Heart J. 2020;41(24):2300-2303.
Kexin W, Yaodong D, Wen G, et al. Association of increased remnant cholesterol and the risk of coronary artery disease: a retrospective study. Front Cardiovasc Med. 2021;8:740596.
Packard CJ. Triglyceride lowering 2.0: back to the future? Eur Heart J. 2020;41(1):95-98.
Balling M, Afzal S, Varbo A, Langsted A, Davey Smith G, Nordestgaard BG. VLDL cholesterol accounts for one-half of the risk of myocardial infarction associated with apoB-containing lipoproteins. J Am Coll Cardiol. 2020;76(23):2725-2735.
Duran EK, Aday AW, Cook NR, Buring JE, Ridker PM, Pradhan AD. Triglyceride-rich lipoprotein cholesterol, small dense LDL cholesterol, and incident cardiovascular disease. J Am Coll Cardiol. 2020;75(17):2122-2135.
Ference BA, Kastelein JJ, Ray KK, et al. Association of triglyceride-lowering LPL variants and LDL-C-lowering LDLR variants with risk of coronary heart disease. Jama. 2019;321(4):364-373.
Talayero BG, Sacks FM. The role of triglycerides in atherosclerosis. Curr Cardiol Rep. 2011;13(6):544-552.
Taylor F, Huffman MD, Macedo AF, et al. Statins for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2013;2013(1):CD004816.
Fernández-Friera L, Fuster V, López-Melgar B, et al. Normal LDL-cholesterol levels are associated with subclinical atherosclerosis in the absence of risk factors. J Am Coll Cardiol. 2017;70(24):2979-2991.
Raposeiras-Roubin S, Rosselló X, Oliva B, et al. Triglycerides and residual atherosclerotic risk. J Am Coll Cardiol. 2021;77(24):3031-3041.
Quispe R, Martin SS, Michos ED, et al. Remnant cholesterol predicts cardiovascular disease beyond LDL and ApoB: a primary prevention study. Eur Heart J. 2021;42(42):4324-4332.
Falko JM. Familial chylomicronemia syndrome: a clinical guide for endocrinologists. Endocr Pract. 2018;24(8):756-763.
Baass A, Paquette M, Bernard S, Hegele RA. Familial chylomicronemia syndrome: an under-recognized cause of severe hypertriglyceridaemia. J Intern Med. 2020;287(4):340-348.
Al-Mrabeh A, Zhyzhneuskaya SV, Peters C, et al. Hepatic lipoprotein export and remission of human type 2 diabetes after weight loss. Cell Metab. 2020;31(2):233-249.