Determination of the preferred epitaxy for III-nitride semiconductors on wet-transferred graphene.
Journal
Science advances
ISSN: 2375-2548
Titre abrégé: Sci Adv
Pays: United States
ID NLM: 101653440
Informations de publication
Date de publication:
02 Aug 2023
02 Aug 2023
Historique:
medline:
2
8
2023
pubmed:
2
8
2023
entrez:
2
8
2023
Statut:
ppublish
Résumé
Transferred graphene provides a promising III-nitride semiconductor epitaxial platform for fabricating multifunctional devices beyond the limitation of conventional substrates. Despite its tremendous fundamental and technological importance, it remains an open question on which kind of epitaxy is preferred for single-crystal III-nitrides. Popular answers to this include the remote epitaxy where the III-nitride/graphene interface is coupled by nonchemical bonds, and the quasi-van der Waals epitaxy (quasi-vdWe) where the interface is mainly coupled by covalent bonds. Here, we show the preferred one on wet-transferred graphene is quasi-vdWe. Using aluminum nitride (AlN), a strong polar III-nitride, as an example, we demonstrate that the remote interaction from the graphene/AlN template can inhibit out-of-plane lattice inversion other than in-plane lattice twist of the nuclei, resulting in a polycrystalline AlN film. In contrast, quasi-vdWe always leads to single-crystal film. By answering this long-standing controversy, this work could facilitate the development of III-nitride semiconductor devices on two-dimensional materials such as graphene.
Identifiants
pubmed: 37531436
doi: 10.1126/sciadv.adf8484
pmc: PMC10396303
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
eadf8484Références
Science. 1998 Aug 14;281(5379):955-61
pubmed: 9703504
Science. 2010 Oct 29;330(6004):655-7
pubmed: 21030653
Nature. 2017 Apr 19;544(7650):340-343
pubmed: 28426001
Sci Rep. 2020 Aug 25;10(1):14166
pubmed: 32843709
Adv Sci (Weinh). 2020 Sep 27;7(21):2000917
pubmed: 33173724
Nano Lett. 2016 Aug 10;16(8):4895-902
pubmed: 27414518
Adv Mater. 2011 Apr 5;23(13):1514-8
pubmed: 21449053
Nat Commun. 2022 Jul 29;13(1):4409
pubmed: 35906212
Adv Sci (Weinh). 2020 Jun 23;7(15):2001272
pubmed: 32775172
Nano Converg. 2023 Apr 28;10(1):19
pubmed: 37115353
Science. 2004 Oct 22;306(5696):666-9
pubmed: 15499015
Phys Rev Lett. 2012 Jun 15;108(24):246103
pubmed: 23004295
Nat Commun. 2019 Apr 23;10(1):1912
pubmed: 31015405
Sci Adv. 2021 Jul 30;7(31):
pubmed: 34330700
Nature. 2023 Feb;614(7946):81-87
pubmed: 36725999
Nat Commun. 2022 Sep 15;13(1):5410
pubmed: 36109519
Adv Mater. 2019 Jun;31(23):e1807345
pubmed: 30993771
J Am Chem Soc. 2018 Sep 26;140(38):11935-11941
pubmed: 30175921
Nano Lett. 2021 May 12;21(9):4013-4020
pubmed: 33900785
ACS Appl Mater Interfaces. 2022 Jan 12;14(1):2263-2274
pubmed: 34978790
Sci Adv. 2020 Jun 03;6(23):eaaz5180
pubmed: 32537496
Adv Mater. 2022 Feb;34(5):e2106814
pubmed: 34757663
Adv Sci (Weinh). 2022 Mar;9(8):e2105201
pubmed: 35038381
Nat Mater. 2016 Jan;15(1):43-7
pubmed: 26595118
Adv Mater. 2023 May;35(18):e2211075
pubmed: 36897809
Angew Chem Int Ed Engl. 2015 Jun 26;54(27):7764-9
pubmed: 26032024
Adv Mater. 2022 Jan;34(1):e2105851
pubmed: 34647373
Nano Lett. 2014 Jun 11;14(6):3270-6
pubmed: 24844319
Small. 2022 Oct;18(41):e2202529
pubmed: 35986697
Nat Commun. 2022 Jul 18;13(1):4014
pubmed: 35851271
Nat Nanotechnol. 2016 Nov;11(11):930-935
pubmed: 27501317
Nat Mater. 2018 Nov;17(11):999-1004
pubmed: 30297812
ACS Nano. 2021 Jun 22;15(6):10587-10596
pubmed: 34081854
Nat Mater. 2022 Nov;21(11):1263-1268
pubmed: 36109673
Nature. 2021 Aug;596(7873):519-524
pubmed: 34433942
Nat Commun. 2014 Sep 11;5:4836
pubmed: 25208642
ACS Nano. 2017 Dec 26;11(12):12337-12345
pubmed: 29191004
Nano Lett. 2011 Aug 10;11(8):3190-6
pubmed: 21696186
Nature. 2019 Mar;567(7748):323-333
pubmed: 30894723
Chem Sci. 2021 May 5;12(22):7713-7719
pubmed: 34168823
Adv Mater. 2020 Apr;32(15):e1903407
pubmed: 31486182