Photothermia at the nanoscale induces ferroptosis via nanoparticle degradation.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
02 08 2023
Historique:
received: 11 01 2023
accepted: 19 07 2023
medline: 4 8 2023
pubmed: 3 8 2023
entrez: 2 8 2023
Statut: epublish

Résumé

The Fe(II)-induced ferroptotic cell death pathway is an asset in cancer therapy, yet it calls into question the biocompatibility of magnetic nanoparticles. In the latter, Fe(II) is sequestered within the crystal structure and is released only upon nanoparticle degradation, a transition that is not well understood. Here, we dissect the chemical environment necessary for nanoparticle degradation and subsequent Fe(II) release. Importantly, temperature acts as an accelerator of the process and can be triggered remotely by laser-mediated photothermal conversion, as evidenced by the loss of the nanoparticles' magnetic fingerprint. Remarkably, the local hot-spot temperature generated at the nanoscale can be measured in operando, in the vicinity of each nanoparticle, by comparing the photothermal-induced nanoparticle degradation patterns with those of global heating. Further, remote photothermal irradiation accelerates degradation inside cancer cells in a tumor spheroid model, with efficiency correlating with the endocytosis progression state of the nanoparticles. High-throughput imaging quantification of Fe

Identifiants

pubmed: 37532698
doi: 10.1038/s41467-023-40258-1
pii: 10.1038/s41467-023-40258-1
pmc: PMC10397343
doi:

Substances chimiques

Ferrous Compounds 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

4637

Informations de copyright

© 2023. The Author(s).

Références

ACS Appl Mater Interfaces. 2022 Nov 2;14(43):48476-48488
pubmed: 36256634
Nanoscale. 2015 Oct 21;7(39):16321-9
pubmed: 26381991
Nanoscale. 2014 Jun 21;6(12):7052-61
pubmed: 24842463
ACS Appl Mater Interfaces. 2021 Feb 24;13(7):7924-7944
pubmed: 33587585
ACS Appl Mater Interfaces. 2021 Oct 27;13(42):49589-49601
pubmed: 34643365
J Mater Chem B. 2020 Dec 8;8(46):10527-10539
pubmed: 33179706
Small. 2022 May;18(18):e2200174
pubmed: 35294104
Adv Mater. 2013 Sep 20;25(35):4868-74
pubmed: 23696297
Adv Drug Deliv Rev. 2019 Jan 1;138:302-325
pubmed: 30639256
Macromol Biosci. 2021 Jan;21(1):e2000249
pubmed: 33015960
Adv Mater. 2019 Dec;31(51):e1904197
pubmed: 31595562
J Phys Chem C Nanomater Interfaces. 2021 Sep 16;125(36):19887-19896
pubmed: 34557262
Int J Mol Sci. 2018 Jan 10;19(1):
pubmed: 29320407
Mater Today (Kidlington). 2019 Dec;31:86-99
pubmed: 32831620
ACS Nano. 2011 Jun 28;5(6):5067-71
pubmed: 21574616
Nanoscale. 2021 Feb 4;13(4):2266-2285
pubmed: 33480938
Nat Nanotechnol. 2016 Nov;11(11):977-985
pubmed: 27668796
Cell Death Dis. 2016 Jul 21;7:e2307
pubmed: 27441659
Nanomedicine (Lond). 2012 May;7(5):705-17
pubmed: 22500704
J Control Release. 2013 Oct 28;171(2):225-33
pubmed: 23906866
Bioconjug Chem. 2019 Nov 20;30(11):2751-2762
pubmed: 31621306
Drug Deliv Transl Res. 2019 Jun;9(3):652-666
pubmed: 30784022
Nanoscale. 2019 Sep 21;11(35):16488-16498
pubmed: 31453605
Adv Mater. 2010 Oct 25;22(40):4499-504
pubmed: 20803765
Angew Chem Int Ed Engl. 2013 Oct 25;52(44):11526-9
pubmed: 24115553
J Control Release. 2020 Mar 10;319:322-332
pubmed: 31917296
Nanoscale. 2015 Jan 14;7(2):570-6
pubmed: 25415565
Front Physiol. 2019 Feb 26;10:139
pubmed: 30863316
Nat Commun. 2020 Apr 20;11(1):1857
pubmed: 32312987
Small. 2013 May 27;9(9-10):1533-45
pubmed: 23019129
ACS Nano. 2020 Feb 25;14(2):1406-1417
pubmed: 31880428
Nanomaterials (Basel). 2020 Aug 07;10(8):
pubmed: 32784579
Sci Adv. 2020 Apr 29;6(18):eaax1346
pubmed: 32494659
Commun Chem. 2020 Jul 3;3(1):86
pubmed: 36703448
Nanoscale. 2017 Aug 17;9(32):11605-11618
pubmed: 28770914
Biomater Sci. 2018 Mar 26;6(4):708-725
pubmed: 29363682
ACS Appl Mater Interfaces. 2019 Nov 13;11(45):41957-41971
pubmed: 31584801
Acc Chem Res. 2018 May 15;51(5):999-1013
pubmed: 29733199
Nano Lett. 2021 Sep 8;21(17):7213-7220
pubmed: 34410726
J Mater Chem B. 2017 Sep 14;5(34):7109-7117
pubmed: 32263901
Biochem Biophys Res Commun. 2017 Jan 15;482(3):419-425
pubmed: 28212725
ACS Appl Bio Mater. 2022 May 16;5(5):1879-1889
pubmed: 35179873
Nat Commun. 2020 Oct 27;11(1):5421
pubmed: 33110072
Nat Commun. 2022 May 19;13(1):2794
pubmed: 35589680
ACS Nano. 2014 May 27;8(5):5199-207
pubmed: 24779552
Biomaterials. 2022 Feb;281:121365
pubmed: 35038611
Nanomedicine (Lond). 2016 Nov;11(21):2769-2779
pubmed: 27739928
Nano Lett. 2013 Jun 12;13(6):2399-406
pubmed: 23659603
Nano Lett. 2021 Jan 13;21(1):769-777
pubmed: 33382624
ACS Nano. 2018 Nov 27;12(11):11355-11365
pubmed: 30375848
Small. 2018 May;14(21):e1704111
pubmed: 29667293
Biomaterials. 2008 Oct;29(30):4137-45
pubmed: 18667235
ACS Appl Mater Interfaces. 2018 Feb 7;10(5):4548-4560
pubmed: 29328627
Chem Soc Rev. 2021 Oct 18;50(20):11614-11667
pubmed: 34661212
ACS Nano. 2019 Jan 22;13(1):260-273
pubmed: 30616348
Nat Commun. 2012 Feb 28;3:705
pubmed: 22426226
J Control Release. 2018 Jun 10;279:271-281
pubmed: 29684497
Nat Commun. 2021 Sep 7;12(1):5311
pubmed: 34493724
Oxid Med Cell Longev. 2014;2014:360438
pubmed: 24999379
Acc Chem Res. 2020 Oct 20;53(10):2212-2224
pubmed: 32935974
Biomed Tech (Berl). 2015 Oct;60(5):417-25
pubmed: 26035106
Nanoscale. 2018 Sep 27;10(37):17858-17864
pubmed: 30221289
Front Cell Dev Biol. 2021 Jan 21;9:637162
pubmed: 33553189
Nat Commun. 2022 Aug 1;13(1):4465
pubmed: 35915075
Pharmaceuticals (Basel). 2018 Oct 19;11(4):
pubmed: 30347635
Angew Chem Int Ed Engl. 2017 Jun 1;56(23):6492-6496
pubmed: 28470979
Cell. 2012 May 25;149(5):1060-72
pubmed: 22632970

Auteurs

Alexandre Fromain (A)

Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005, Paris, France.

Jose Efrain Perez (JE)

Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005, Paris, France.

Aurore Van de Walle (A)

Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005, Paris, France.

Yoann Lalatonne (Y)

Université Sorbonne Paris Nord, Université Paris Cité, Laboratory for Vascular Translational Science, LVTS, INSERM, UMR 1148, F‑ 93017, Bobigny, France.
Département de Biophysique et de Médecine Nucléaire, Assistance Publique-Hôpitaux de Paris, Hôpital Avicenne, F‑ 93009, Bobigny, France.

Claire Wilhelm (C)

Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005, Paris, France. claire.wilhelm@cnrs.fr.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH