Quantum oscillations of the quasiparticle lifetime in a metal.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
Sep 2023
Sep 2023
Historique:
received:
05
10
2022
accepted:
15
06
2023
medline:
15
9
2023
pubmed:
3
8
2023
entrez:
2
8
2023
Statut:
ppublish
Résumé
Following nearly a century of research, it remains a puzzle that the low-lying excitations of metals are remarkably well explained by effective single-particle theories of non-interacting bands
Identifiants
pubmed: 37532938
doi: 10.1038/s41586-023-06330-y
pii: 10.1038/s41586-023-06330-y
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
276-281Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Luttinger, J. M. Theory of the de Haas-van Alphen effect for a system of interacting fermions. Phys. Rev. 121, 1251–1258 (1961).
doi: 10.1103/PhysRev.121.1251
Engelsberg, S. & Simpson, G. Influence of electron-phonon interactions on the de Haas-van Alphen effect. Phys. Rev. B 2, 1657–1665 (1970).
doi: 10.1103/PhysRevB.2.1657
Wasserman, A., Springford, M. & Hewson, A. Theory of the de Haas-van Alphen effect for heavy-fermion alloys. J. Phys. Condens. Matter 1, 2669–2676 (1989).
doi: 10.1088/0953-8984/1/16/002
Taillefer, L., Newbury, R., Lonzarich, G., Fisk, Z. & Smith, J. Direct observation of heavy quasiparticles in UPt
doi: 10.1016/0304-8853(87)90612-3
van Delft, M. R. et al. Electron-hole tunneling revealed by quantum oscillations in the nodal-line semimetal HfSiS. Phys. Rev. Lett. 121, 256602 (2018).
pubmed: 30608835
doi: 10.1103/PhysRevLett.121.256602
Müller, C. S. A. et al. Determination of the Fermi surface and field-induced quasiparticle tunneling around the Dirac nodal loop in ZrSiS. Phys. Rev. Res. 2, 023217 (2020).
doi: 10.1103/PhysRevResearch.2.023217
Ding, L. et al. Quantum oscillations, magnetic breakdown and thermal Hall effect in Co
doi: 10.1088/1361-6463/ac1c2b
Pavlosiuk, O., Swatek, P. W., Wang, J.-P., Wiśniewski, P. & Kaczorowski, D. Giant magnetoresistance, Fermi-surface topology, Shoenberg effect, and vanishing quantum oscillations in the type-II Dirac semimetal candidates MoSi
doi: 10.1103/PhysRevB.105.075141
Broyles, C. et al. Revealing a 3D Fermi surface and electron-hole tunneling in UTe
Reiss, P. et al. Quenched nematic criticality and two superconducting domes in an iron-based superconductor. Nat. Phys. 16, 89–94 (2020).
doi: 10.1038/s41567-019-0694-2
Sebastian, S. E. & Proust, C. Quantum oscillations in hole-doped cuprates. Annu. Rev. Condens. Matter Phys. 6, 411–430 (2015).
doi: 10.1146/annurev-conmatphys-030212-184305
McMullan, G. J. et al. The Fermi surface and f-valence electron count of UPt
doi: 10.1088/1367-2630/10/5/053029
Shishido, H. et al. Anomalous change in the de Haas–van Alphen oscillations of CeCoIn
pubmed: 29756834
doi: 10.1103/PhysRevLett.120.177201
Dalgaard, K. J., Lei, S., Wiedmann, S., Bremholm, M. & Schoop, L. M. Anomalous Shubnikov-de Haas quantum oscillations in rare-earth tritelluride NdTe
doi: 10.1103/PhysRevB.102.245109
Sunko, V. et al. Maximal Rashba-like spin splitting via kinetic-energy-coupled inversion-symmetry breaking. Nature 549, 492–496 (2017).
pubmed: 28959958
doi: 10.1038/nature23898
Phinney, I. et al. Strong interminivalley scattering in twisted bilayer graphene revealed by high-temperature magneto-oscillations. Phys. Rev. Lett. 127, 056802 (2021).
pubmed: 34397232
doi: 10.1103/PhysRevLett.127.056802
Broyles, C. et al. Effect of the interlayer ordering on the Fermi surface of Kagome superconductor CsV
pubmed: 36269950
doi: 10.1103/PhysRevLett.129.157001
Sanchez, D. S. et al. Topological chiral crystals with helicoid-arc quantum states. Nature 567, 500–505 (2019).
pubmed: 30894753
doi: 10.1038/s41586-019-1037-2
Landau, L. Diamagnetismus der Metalle. Z. Phys. 64, 629–637 (1930).
doi: 10.1007/BF01397213
de Haas, W. J. & van Alphen, P. M. The dependence of the susceptibility of diamagnetic metals upon the field. Proc. Netherlands Roy. Acad. Sci. 33, 1106–1118 (1930).
Shoenberg, D. Magnetic Oscillations in Metals (Cambridge Univ. Press, 1984).
Peierls, R. Zur Theorie des Diamagnetismus von Leitungselektronen. Z. Phys. 80, 763–791 (1933).
doi: 10.1007/BF01342591
Onsager, L. Interpretation of the de Haas-van Alphen effect. Lond. Edinb. Dublin Philos. Mag. J. Sci. 43, 1006–1008 (1952).
doi: 10.1080/14786440908521019
Lifshitz, I. M. & Kosevich, A. Theory of magnetic susceptibility in metals at low temperatures. Sov. Phys. JETP 2, 636–645 (1956).
Kartsovnik, M. V. High magnetic fields: a tool for studying electronic properties of layered organic metals. Chem. Rev. 104, 5737–5781 (2004).
pubmed: 15535667
doi: 10.1021/cr0306891
Julian, S. R. in Strongly Correlated Systems (eds Avella, A. & Mancini, F.) 137–172 (Springer, 2015).
Tan, B. S. et al. Unconventional Fermi surface in an insulating state. Science 349, 287–290 (2015).
pubmed: 26138105
doi: 10.1126/science.aaa7974
Han, Z., Li, T., Zhang, L., Sullivan, G. & Du, R.-R. Anomalous conductance oscillations in the hybridization gap of InAs/GaSb quantum wells. Phys. Rev. Lett. 123, 126803 (2019).
pubmed: 31633941
doi: 10.1103/PhysRevLett.123.126803
Knolle, J. & Cooper, N. R. Quantum oscillations without a Fermi surface and the anomalous de Haas–van Alphen effect. Phys. Rev. Lett. 115, 146401 (2015).
pubmed: 26551816
doi: 10.1103/PhysRevLett.115.146401
Sodemann, I., Chowdhury, D. & Senthil, T. Quantum oscillations in insulators with neutral Fermi surfaces. Phys. Rev. B 97, 045152 (2018).
doi: 10.1103/PhysRevB.97.045152
Dingle, R. B. Some magnetic properties of metals II. The influence of collisions on the magnetic behaviour of large systems. Proc. R. Soc. Lond. A Math. Phys. Sci. 211, 517–525 (1952).
Polyanovsky, V. Magnetointersubband oscillations of conductivity in a two-dimensional electronic system. Sov. Phys. Semicond. 22, 1408–1409 (1988).
Polyanovsky, V. High-temperature quantum oscillations of the magnetoresistance in layered systems. Phys. Rev. B 47, 1985–1990 (1993).
doi: 10.1103/PhysRevB.47.1985
Huber, N. et al. Network of topological nodal planes, multifold degeneracies, and Weyl points in CoSi. Phys. Rev. Lett. 129, 026401 (2022).
pubmed: 35867447
doi: 10.1103/PhysRevLett.129.026401
Rao, Z. et al. Observation of unconventional chiral fermions with long Fermi arcs in CoSi. Nature 567, 496–499 (2019).
pubmed: 30894751
doi: 10.1038/s41586-019-1031-8
Guo, C. et al. Quasi-symmetry-protected topology in a semi-metal. Nat. Phys. 18, 813–818 (2022).
pubmed: 35855397
pmcid: 7613062
doi: 10.1038/s41567-022-01604-0
Alexandrov, A. S. & Kabanov, V. V. Combination quantum oscillations in canonical single-band Fermi liquids. Phys. Rev. B 76, 233101 (2007).
doi: 10.1103/PhysRevB.76.233101
Allocca, A. A. & Cooper, N. R. Low-frequency quantum oscillations from interactions in layered metals. Phys. Rev. Res. 3, L042009 (2021).
doi: 10.1103/PhysRevResearch.3.L042009
Cohen, M. H. & Falicov, L. M. Magnetic breakdown in crystals. Phys. Rev. Lett. 7, 231–233 (1961).
doi: 10.1103/PhysRevLett.7.231
Blount, E. I. Bloch electrons in a magnetic field. Phys. Rev. 126, 1636–1653 (1962).
doi: 10.1103/PhysRev.126.1636
Chambers, R. G. Magnetic breakdown in real metals. Proc. Phys. Soc. 88, 701–715 (1966).
doi: 10.1088/0370-1328/88/3/318
Bergmann, G. Weak localization in thin films: a time-of-flight experiment with conduction electrons. Phys. Rep. 107, 1–58 (1984).
doi: 10.1016/0370-1573(84)90103-0
Lee, P. A. & Stone, A. D. Universal conductance fluctuations in metals. Phys. Rev. Lett. 55, 1622–1625 (1985).
pubmed: 10031872
doi: 10.1103/PhysRevLett.55.1622
Fu, Y. et al. Quantum transport evidence of topological band structures of Kagome superconductor CsV
pubmed: 34860054
doi: 10.1103/PhysRevLett.127.207002
Allocca, A. A. & Cooper, N. R. Fluctuation-dominated quantum oscillations in excitonic insulators. Preprint at https://arxiv.org/abs/2302.06633 (2023).
Yuan, Q.-Q. et al. Quasiparticle interference evidence of the topological Fermi arc states in chiral fermionic semimetal CoSi. Sci. Adv. 5, eaaw9485 (2019).
pubmed: 32064310
pmcid: 6989308
doi: 10.1126/sciadv.aaw9485
Wu, D. S. et al. Single crystal growth and magnetoresistivity of topological semimetal CoSi. Chin. Phys. Lett. 36, 077102 (2019).
doi: 10.1088/0256-307X/36/7/077102
Xu, X. et al. Crystal growth and quantum oscillations in the topological chiral semimetal CoSi. Phys. Rev. B 100, 045104 (2019).
doi: 10.1103/PhysRevB.100.045104
Wang, H. et al. de Haas–van Alphen quantum oscillations and electronic structure in the large-Chern-number topological chiral semimetal CoSi. Phys. Rev. B 102, 115129 (2020).
doi: 10.1103/PhysRevB.102.115129
Sasmal, S. et al. Shubnikov-de Haas and de Haas-van Alphen oscillations in Czochralski grown CoSi single crystal. J. Phys. Condens. Matter 34, 425702 (2022).
doi: 10.1088/1361-648X/ac8960
Neubauer, A. et al. Ultra-high vacuum compatible image furnace. Rev. Sci. Instrum. 82, 013902 (2011).
pubmed: 21280840
doi: 10.1063/1.3523056
Bauer, A., Benka, G., Regnat, A., Franz, C. & Pfleiderer, C. Ultra-high vacuum compatible preparation chain for intermetallic compounds. Rev. Sci. Instrum. 87, 113902 (2016).
pubmed: 27910441
doi: 10.1063/1.4967011
Springford, M. The anisotropy of conduction electron scattering in the noble metals. Adv. Phys. 20, 493–550 (1971).
doi: 10.1080/00018737100101301
Paul, D. M. & Springford, M. Accurate measurement of changes in electron scattering in the de Haas-van Alphen effect. J. Low Temp. Phys. 27, 561–569 (1977).
doi: 10.1007/BF00655287
Blaha, P. et al. WIEN2k: an APW+lo program for calculating the properties of solids. J. Chem. Phys. 152, 074101 (2020).
pubmed: 32087668
doi: 10.1063/1.5143061
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
pubmed: 10062328
doi: 10.1103/PhysRevLett.77.3865
Tang, P., Zhou, Q. & Zhang, S.-C. Multiple types of topological fermions in transition metal silicides. Phys. Rev. Lett. 119, 206402 (2017).
pubmed: 29219362
doi: 10.1103/PhysRevLett.119.206402
Pshenay-Severin, D. A., Ivanov, Y. V., Burkov, A. A. & Burkov, A. T. Band structure and unconventional electronic topology of CoSi. J. Phys. Condens. Matter 30, 135501 (2018).
pubmed: 29460854
doi: 10.1088/1361-648X/aab0ba
Wilde, M. & Pfleiderer, C. Large curvature near a small gap. Nat. Phys. 18, 731–732 (2022).
doi: 10.1038/s41567-022-01623-x
O’Brien, T. E., Diez, M. & Beenakker, C. W. J. Magnetic breakdown and Klein tunneling in a type-II Weyl semimetal. Phys. Rev. Lett. 116, 236401 (2016).
pubmed: 27341246
doi: 10.1103/PhysRevLett.116.236401
Alexandrov, A. S. & Bratkovsky, A. M. New fundamental dHvA frequency in canonical low-dimensional Fermi liquids. Phys. Lett. A 234, 53–58 (1997).
doi: 10.1016/S0375-9601(97)00536-7
Stark, R. W. & Friedberg, C. B. Quantum interference of electron waves in a normal metal. Phys. Rev. Lett. 26, 556–559 (1971).
doi: 10.1103/PhysRevLett.26.556
Kaganov, M. I. & Slutskin, A. A. Coherent magnetic breakdown. Phys. Rep. 98, 189–271 (1983).
doi: 10.1016/0370-1573(83)90006-6
Leadley, D. R. et al. Intersubband resonant scattering in GaAs-Ga
doi: 10.1103/PhysRevB.46.12439
Coleridge, P. T. Inter-subband scattering in a 2D electron gas. Semicond. Sci. Technol. 5, 961–966 (1990).
doi: 10.1088/0268-1242/5/9/006
Raikh, M. E. & Shahbazyan, T. V. Magnetointersubband oscillations of conductivity in a two-dimensional electronic system. Phys. Rev. B 49, 5531–5540 (1994).
doi: 10.1103/PhysRevB.49.5531
Goran, A. V., Bykov, A. A., Toropov, A. I. & Vitkalov, S. A. Effect of electron-electron scattering on magnetointersubband resistance oscillations of two-dimensional electrons in GaAs quantum wells. Phys. Rev. B 80, 193305 (2009).
doi: 10.1103/PhysRevB.80.193305
Grigoriev, P. D. Theory of the Shubnikov–de Haas effect in quasi-two-dimensional metals. Phys. Rev. B 67, 144401 (2003).
doi: 10.1103/PhysRevB.67.144401
Thomas, I. O., Kabanov, V. V. & Alexandrov, A. S. Shubnikov–de Haas effect in multiband quasi-two-dimensional metals. Phys. Rev. B 77, 075434 (2008).
doi: 10.1103/PhysRevB.77.075434
Leeb, V., & Knolle, J. On the theory of difference frequency quantum oscillations. Preprint at https://arxiv.org/abs/2306.10760 (2023).
Bastin, A., Lewiner, C., Betbeder-matibet, O. & Nozieres, P. Quantum oscillations of the Hall effect of a Fermion gas with random impurity scattering. J. Phys. Chem. Solids 32, 1811–1824 (1971).
doi: 10.1016/S0022-3697(71)80147-6
Mañes, J. L. Existence of bulk chiral fermions and crystal symmetry. Phys. Rev. B 85, 155118 (2012).
doi: 10.1103/PhysRevB.85.155118
Bradlyn, B. et al. Beyond Dirac and Weyl fermions: unconventional quasiparticles in conventional crystals. Science 353, aaf5037 (2016).
pubmed: 27445310
doi: 10.1126/science.aaf5037
Yasuoka, H., Sherwood, R., Wernick, J. & Wertheim, G. Local moment formation in substituted and cobalt-rich CoSi. Mater. Res. Bull. 9, 223–231 (1974).
doi: 10.1016/0025-5408(74)90071-3
Wernick, J., Wertheim, G. & Sherwood, R. Magnetic behavior of the monosilicides of the 3d-transition elements. Mater. Res. Bull. 7, 1431–1441 (1972).
doi: 10.1016/0025-5408(72)90180-8
Wertheim, G. K., Wernick, J. H. & Buchanan, D. N. E. Mössbauer effect in Co
doi: 10.1063/1.1708858
Kawarazaki, S., Yasuoka, H. & Nakamura, Y. Moment formation on Co atom in FeSi–CoSi mixed system -Co
doi: 10.1016/0038-1098(72)90221-9