Development and characterization of fused human arginase I for cancer therapy.

Auxotrophy Cancer Fusion protein technology Human arginase I

Journal

Investigational new drugs
ISSN: 1573-0646
Titre abrégé: Invest New Drugs
Pays: United States
ID NLM: 8309330

Informations de publication

Date de publication:
Oct 2023
Historique:
received: 28 06 2023
accepted: 21 07 2023
pubmed: 3 8 2023
medline: 3 8 2023
entrez: 2 8 2023
Statut: ppublish

Résumé

Recombinant human arginase I (rhArg I) have emerged as a potential candidate for the treatment of varied pathophysiological conditions ranging from arginine-auxotrophic cancer, inflammatory conditions and microbial infection. However, rhArg I have a low circulatory half-life, leading to poor pharmacokinetic and pharmacodynamic properties, which necessitating the rapid development of modifications to circumvent these limitations. To address this, polyethylene glycol (PEG)ylated-rhArg I variants are being developed by pharmaceutical companies. However, because of the limitations associated with the clinical use of PEGylated proteins, there is a dire need in the art to develop rhArg I variant(s) which is safe (devoid of limitations of PEGylated counterpart) and possess increased circulatory half-life. In this study, we described the generation and characterization of a fused human arginase I variant (FHA-3) having improved circulatory half-life. FHA-3 protein was engineered by fusing rhArg I with a half-life extension partner (domain of human serum albumin) via a peptide linker and was produced using P. pastoris expression system. This purified biopharmaceutical (FHA-3) exhibits (i) increased arginine-hydrolyzing activity in buffer, (ii) cofactor - independency, (iii) increased circulatory half-life (t

Identifiants

pubmed: 37532976
doi: 10.1007/s10637-023-01387-y
pii: 10.1007/s10637-023-01387-y
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

652-663

Subventions

Organisme : Department of Biotechnology, Ministry of Science and Technology, India
ID : BT/PR23283/MED/30/1953/2018

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Geiger R, Rieckmann JC, Wolf T, Basso C, Feng Y, Fuhrer T, Kogadeeva M, Picotti P, Meissner F, Mann M, Zamboni N (2016) L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell 167(3):829–842
doi: 10.1016/j.cell.2016.09.031 pubmed: 27745970 pmcid: 5075284
Anakha J, Kawathe PS, Datta S, Jawalekar SS, Banerjee UC, Pande AH (2022) Human arginase 1, a Jack of all trades? 3 Biotech 12(10):1–9
doi: 10.1007/s13205-022-03326-9
Feun L, You M, Wu CJ, Kuo MT, Wangpaichitr M, Spector S, Savaraj N (2008) Arginine deprivation as a targeted therapy for cancer. Curr Pharm Design 14(11):1049–1057
doi: 10.2174/138161208784246199
Delage B, Fennell DA, Nicholson L, McNeish I, Lemoine NR, Crook T, Szlosarek PW (2010) Arginine deprivation and argininosuccinate synthetase expression in the treatment of cancer. Int J Cancer 126(12):2762–2772
pubmed: 20104527
Delage B, Luong P, Maharaj L, O’riain C, Syed N, Crook T, Hatzimichael E, Papoudou-Bai A, Mitchell TJ, Whittaker SJ, Cerio R (2012) Promoter methylation of argininosuccinate synthetase-1 sensitises lymphomas to arginine deiminase treatment, autophagy and caspase-dependent apoptosis. Cell Death Dis 3(7):e342–e342
doi: 10.1038/cddis.2012.83 pubmed: 22764101 pmcid: 3406582
Jeon H, Kim JH, Lee E, Jang YJ, Son JE, Kwon JY, Lim TG, Kim S, Park JH, Kim JE, Lee KW (2016) Methionine deprivation suppresses triple-negative breast cancer metastasis in vitro and in vivo. Oncotarget 7(41):67223-67234
doi: 10.18632/oncotarget.11615 pubmed: 27579534 pmcid: 5341870
Wang Z, Xie Q, Zhou H, Zhang M, Shen J, Ju D (2021) Amino acid degrading enzymes and autophagy in cancer therapy. Front Pharmacol 11:582587
doi: 10.3389/fphar.2020.582587 pubmed: 33510635 pmcid: 7836011
Stone EM, Glazer ES, Chantranupong L, Cherukuri P, Breece RM, Tierney DL, Curley SA, Iverson BL, Georgiou G (2010) Replacing Mn
doi: 10.1021/cb900267j pubmed: 20050660 pmcid: 2842482
Cheng PN, Lam TL, Lam WM, Tsui SM, Cheng AW, Lo WH, Leung YC (2007) Pegylated recombinant human arginase (rhArg-peg5, 000mw) inhibits the in vitro and in vivo proliferation of human hepatocellular carcinoma through arginine depletion. Cancer Res 67(1):309–317
doi: 10.1158/0008-5472.CAN-06-1945 pubmed: 17210712
Lam TL, Wong GK, Chow HY, Chong HC, Chow TL, Kwok SY, Cheng PN, Wheatley DN, Lo WH, Leung YC (2011) Recombinant human arginase inhibits the in vitro and in vivo proliferation of human melanoma by inducing cell cycle arrest and apoptosis. Pigment cell melanoma res 24(2):366–376
doi: 10.1111/j.1755-148X.2010.00798.x pubmed: 21029397
Patil MD, Bhaumik J, Babykutty S, Banerjee UC, Fukumura D (2016) Arginine dependence of tumor cells: targeting a chink in cancer’s armor. Oncogene 35(38):4957–4972
doi: 10.1038/onc.2016.37 pubmed: 27109103 pmcid: 5457742
Glazer ES, Stone EM, Zhu C, Massey KL, Hamir AN, Curley SA (2011) Bioengineered human arginase I with enhanced activity and stability controls hepatocellular and pancreatic carcinoma xenografts. Translational Oncol 4(3):138–146
doi: 10.1593/tlo.10265
Chung SF, Kim CF, Tam SY, Choi MC, So PK, Wong KY, Leung YC, Lo WH (2020) A bioengineered arginine-depleting enzyme as a long-lasting therapeutic agent against cancer. Appl Microbiol Biotechnol 104(9):3921–3934
doi: 10.1007/s00253-020-10484-4 pubmed: 32144472
Langenheim JF, Chen WY (2009) Improving the pharmacokinetics/pharmacodynamics of prolactin, GH, and their antagonists by fusion to a synthetic albumin-binding peptide. J Endocrinol 203(3):375
doi: 10.1677/JOE-09-0211 pubmed: 19770179
Fee CJ, Van Alstine JM (2011) Purification of pegylated proteins.  Methods Biochem Anal 54, 339–362
doi: 10.1002/9780470939932.ch14
Li L, Wang Y, Chen J, Cheng B, Hu J, Zhou Y, Gao X, Gao L, Mei X, Sun M, Zhang Z (2013) An engineered arginase FC protein inhibits tumor growth in vitro and in vivo. Evid Based Complement Alternat Med eCAM, 423129
Haeckel A, Appler F, Ariza de Schellenberger A, Schellenberger E (2016) XTEN as Biological Alternative to PEGylation allows complete expression of a protease-activatable killin-based cytostatic. PLoS ONE 11(6):e0157193
doi: 10.1371/journal.pone.0157193 pubmed: 27295081 pmcid: 4905650
Iyengar AS, Gupta S, Jawalekar S, Pande AH (2019) Protein chimerization: a new frontier for engineering protein therapeutics with improved pharmacokinetics. J Pharmacol Exp Ther 370(3):703–714
doi: 10.1124/jpet.119.257063 pubmed: 31010843
Kontermann RE (2011) Strategies for extended serum half-life of protein therapeutics. Curr Opin Biotechnol 22(6):868–876
doi: 10.1016/j.copbio.2011.06.012 pubmed: 21862310
Zaman R, Islam RA, Ibnat N, Othman I, Zaini A, Lee CY, Chowdhury EH (2019) Current strategies in extending half-lives of therapeutic proteins. J Control Release 301:176–189
doi: 10.1016/j.jconrel.2019.02.016 pubmed: 30849445
Strohl WR (2015) Fusion proteins for half-life extension of biologics as a strategy to make biobetters. BioDrugs 29(4):215–239
doi: 10.1007/s40259-015-0133-6 pubmed: 26177629 pmcid: 4562006
Sockolosky JT, Tiffany MR, Szoka FC (2012) Engineering neonatal fc receptor-mediated recycling and transcytosis in recombinant proteins by short terminal peptide extensions. Proc Natl Acad Sci 109(40):16095–16100
doi: 10.1073/pnas.1208857109 pubmed: 22991460 pmcid: 3479544
Dennis MS, Zhang M, Meng YG, Kadkhodayan M, Kirchhofer D, Combs D, Damico LA (2002) Albumin binding as a general strategy for improving the pharmacokinetics of proteins. J Biol Chem 277(38):35035–35043
doi: 10.1074/jbc.M205854200 pubmed: 12119302
Chen X, Zaro J, Shen WC (2013) Fusion protein linkers: effects on production, bioactivity, and pharmacokinetics. Fusion protein technologies for biopharmaceuticals: applications and challenges, 57–73
Bajaj P, Tripathy RK, Aggarwal G, Datusalia AK, Sharma SS, Pande AH (2016) Refolded recombinant human paraoxonase 1 variant exhibits prophylactic activity against organophosphate poisoning. Appl Biochem Biotechnol 180(1):165–176
doi: 10.1007/s12010-016-2091-y pubmed: 27131877
Schabbauer G, Bluml S, Sahin-Heco E, Cheng P, Chen L (2017) Methods and compositions for modulating the immune system with arginase I. (U.S. Patent No. 9789169B2)
Kaur J, Tikoo K (2015) Ets1 identified as a novel molecular target of RNA aptamer selected against metastatic cells for targeted delivery of nano-formulation. Oncogene 34(41):5216–5228
doi: 10.1038/onc.2014.447 pubmed: 25639877 pmcid: 4687462
Surapaneni SK, Bhat ZR, Tikoo K (2020) MicroRNA-941 regulates the proliferation of breast cancer cells by altering histone H3 ser 10 phosphorylation. Sci Rep 10(1):1–17
doi: 10.1038/s41598-020-74847-7
Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63
doi: 10.1016/0022-1759(83)90303-4 pubmed: 6606682
Karbalaei M, Rezaee SA, Farsiani H (2020) Pichia pastoris: a highly successful expression system for optimal synthesis of heterologous proteins. J Cell Physiol 235(9):5867–5881
doi: 10.1002/jcp.29583 pubmed: 32057111 pmcid: 7228273
Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22(4):249–270
doi: 10.1002/yea.1208 pubmed: 15704221
Ikemoto M, Tabata M, Miyake T, Kono T, Mori M, Totani M, Murachi T (1990) Expression of human liver arginase in Escherichia coli. Purification and properties of the product. Biochem J 270(3):697–703
doi: 10.1042/bj2700697 pubmed: 2241902 pmcid: 1131788
Cheng NM (2012) Use of pegylated recombinant human arginase for treatment of leukemia. (U.S. Patent No. 20130295073A1).
Cheng NM, Chen L (2015) Human arginase and pegylated human arginase and the use thereof. (U.S. Patent No. 9109218B2).
Leung YC, Shum SW (2019) Composition and application of arginine-depleting agents for cancer, obesity, metabolic disorders, and related complications and comorbidities. (International publication No. WO 2019/ 228510 A1).
Cheng NM (2008) Pharmaceutical Composition and Method of treating Hepatitis with Arginases. (U.S. Patent No. 20080299638A1)
Hsueh EC, Knebel SM, Lo WH, Leung YC, Cheng PN, Hsueh CT (2012) Deprivation of arginine by recombinant human arginase in prostate cancer cells. J Hematol Oncol 5(1):1–6
doi: 10.1186/1756-8722-5-S1-A1
Chung SF, Kim CF, Kwok SY, Tam SY, Chen YW, Chong HC, Leung SL, So PK, Wong KY, Leung YC, Lo WH (2020) Mono-PEGylation of a thermostable arginine-depleting enzyme for the treatment of lung cancer. Int J Mol Sci 21(12):4234
doi: 10.3390/ijms21124234 pubmed: 32545874 pmcid: 7353006
Zhang Y, Chung SF, Tam SY, Leung YC, Guan X (2021) Arginine deprivation as a strategy for cancer therapy: an insight into drug design and drug combination. Cancer Lett 502:58–70
doi: 10.1016/j.canlet.2020.12.041 pubmed: 33429005
Kontermann RE (2016) Half-life extended biotherapeutics. Expert Opin Biol Ther 16(7):903–915
doi: 10.1517/14712598.2016.1165661 pubmed: 26967759
DrugBank (2022): Powering health insights with structured drug data. https://www.drugbank.com , (accessed 15 June 2022)
U.S National Libraray of Medicine, ClinicalTrials.gov: https://clinicaltrials.gov , 2022 (accessed 15 June 2022)
Fang L, Jiang Y, Yang Y, Zheng Y, Zheng J, Jiang H, Zhang S, Lin L, Zheng J, Zhang S, Zhuang X (2016) Determining the optimal 5-FU therapeutic dosage in the treatment of colorectal cancer patients. Oncotarget 7(49):81880
doi: 10.18632/oncotarget.11980 pubmed: 27636992 pmcid: 5348438

Auteurs

Snehal Sainath Jawalekar (SS)

Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062, Punjab, India.

Priyanka Sugriv Kawathe (PS)

Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062, Punjab, India.

Nisha Sharma (N)

Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062, Punjab, India.

J Anakha (J)

Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062, Punjab, India.

Kulbhushan Tikoo (K)

Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062, Punjab, India.

Abhay H Pande (AH)

Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062, Punjab, India. apande@niper.ac.in.

Classifications MeSH