Stimulated Raman scattering microscopy reveals a unique and steady nature of brain water dynamics.
brain tissue
development
diffusion
fluorescent dye
ischemia
multiphoton microscopy
stimulated Raman scattering
water
Journal
Cell reports methods
ISSN: 2667-2375
Titre abrégé: Cell Rep Methods
Pays: United States
ID NLM: 9918227360606676
Informations de publication
Date de publication:
24 07 2023
24 07 2023
Historique:
received:
12
12
2022
revised:
26
04
2023
accepted:
07
06
2023
medline:
4
8
2023
pubmed:
3
8
2023
entrez:
3
8
2023
Statut:
epublish
Résumé
The biological activities of substances in the brain are shaped by their spatiotemporal dynamics in brain tissues, all of which are regulated by water dynamics. In contrast to solute dynamics, water dynamics have been poorly characterized, owing to the lack of appropriate analytical tools. To overcome this limitation, we apply stimulated Raman scattering multimodal multiphoton microscopy to live brain tissues. The microscopy system allows for the visualization of deuterated water, fluorescence-labeled solutes, and cellular structures at high spatiotemporal resolution, revealing that water moves faster than fluorescent molecules in brain tissues. Detailed analyses demonstrate that water, unlike solutes, diffuses homogeneously in brain tissues without differences between the intra- and the extracellular routes. Furthermore, we find that the water dynamics are steady during development and ischemia, when diffusions of solutes are severely affected. Thus, our approach reveals routes and uniquely robust properties of water diffusion in brain tissues.
Identifiants
pubmed: 37533646
doi: 10.1016/j.crmeth.2023.100519
pii: S2667-2375(23)00148-0
pmc: PMC10391342
doi:
Substances chimiques
Water
059QF0KO0R
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
100519Informations de copyright
© 2023 The Author(s).
Déclaration de conflit d'intérêts
The authors declare no competing interests.
Références
Nat Neurosci. 2015 Oct;18(10):1518-29
pubmed: 26368944
Nat Rev Neurosci. 2021 Jun;22(6):326-344
pubmed: 33846637
J Neurosci. 2013 Nov 13;33(46):18190-9
pubmed: 24227727
PLoS Biol. 2015 Jul 23;13(7):e1002203
pubmed: 26204162
PLoS One. 2021 Sep 15;16(9):e0249384
pubmed: 34525113
Sci Transl Med. 2012 Aug 15;4(147):147ra111
pubmed: 22896675
Spectrochim Acta A Mol Biomol Spectrosc. 2014 Aug 14;129:609-23
pubmed: 24836126
Acc Chem Res. 2016 Aug 16;49(8):1494-502
pubmed: 27486796
Physiol Rev. 2008 Oct;88(4):1277-340
pubmed: 18923183
Nat Commun. 2016 May 09;7:11557
pubmed: 27156702
Anal Chem. 2020 Apr 21;92(8):5656-5660
pubmed: 32202108
Anal Chem. 2021 Jul 13;93(27):9345-9355
pubmed: 34210142
JCI Insight. 2021 May 24;6(10):
pubmed: 33857020
iScience. 2022 Feb 17;25(3):103936
pubmed: 35252821
J Neurosci Methods. 2017 Nov 1;291:83-94
pubmed: 28782629
Nutr Rev. 2015 Sep;73 Suppl 2:83-96
pubmed: 26290294
Biochem Biophys Res Commun. 2014 Feb 7;444(2):171-6
pubmed: 24440704
Nat Methods. 2004 Oct;1(1):31-7
pubmed: 15782150
Cell. 2018 Feb 22;172(5):1108-1121.e15
pubmed: 29474910
J Am Chem Soc. 2012 Dec 26;134(51):20681-9
pubmed: 23198907
Biophys J. 1993 Dec;65(6):2277-90
pubmed: 7508761
J Phys Chem A. 2019 May 2;123(17):3928-3934
pubmed: 30957999
Nat Commun. 2018 Aug 6;9(1):2995
pubmed: 30082908
Nat Methods. 2012 Jun 28;9(7):676-82
pubmed: 22743772
Radiology. 2000 Nov;217(2):331-45
pubmed: 11058626
Neuron. 2012 Jul 26;75(2):230-49
pubmed: 22841309
Nat Methods. 2021 Jan;18(1):100-106
pubmed: 33318659
FEBS Lett. 1997 May 5;407(3):313-9
pubmed: 9175875
Cereb Cortex. 2013 Sep;23(9):2118-26
pubmed: 22776675
Biophys J. 2011 Nov 2;101(9):2277-83
pubmed: 22067168
Annu Rev Phys Chem. 2011;62:507-30
pubmed: 21453061
Mol Cell Neurosci. 2013 Sep;56:65-75
pubmed: 23428384
Neuroscience. 2009 Jun 16;161(1):39-45
pubmed: 19303428