Strong Inhibition of Ice Growth by Biomimetic Crowding Coacervates.

Biological Fluids Coacervate Crowded Solution Cryopreservation Ice Recrystallization

Journal

Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543

Informations de publication

Date de publication:
18 09 2023
Historique:
received: 01 08 2023
medline: 15 9 2023
pubmed: 3 8 2023
entrez: 3 8 2023
Statut: ppublish

Résumé

The freezing of biological fluids is intensively studied but remains elusive as it is affected not only by the various components but also by the crowding nature of the biological fluids. Herein, we constructed spherical crowders, fibrous crowders, and coacervates by various components ranging from surfactants to polymers and proteins, to mimic three typical crowders in biological fluids, i.e., globular proteins, fibrous networks, and condensates of biomolecules. It is elucidated that the three crowders exhibit low, moderate, and strong ice growth inhibition activity, respectively, resulting from their different abilities in slowing down water dynamics. Intriguingly, the coacervate consisting of molecules without obvious ice growth inhibition activity strongly inhibits ice growth, which is firstly employed as a highly-potent cryoprotectant. This work provides new insights into the survival of freezing-tolerant organisms and opens an avenue for the design of ice-controlling materials.

Identifiants

pubmed: 37534606
doi: 10.1002/anie.202311047
doi:

Substances chimiques

Ice 0
Antifreeze Proteins 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e202311047

Informations de copyright

© 2023 Wiley-VCH GmbH.

Références

 
R. J. Ellis, A. P. Minton, Nature 2003, 425, 27;
J. A. Dix, A. S. Verkman, Annu. Rev. Biophys. 2008, 37, 247-263.
 
T. Ando, J. Skolnick, Proc. Natl. Acad. Sci. USA 2010, 107, 18457-18462;
G. Yan, S. Monnier, M. Mouelhi, T. Dehoux, Proc. Natl. Acad. Sci. USA 2022, 119, e2113614119.
 
H. X. Zhou, G. Rivas, A. P. Minton, Annu. Rev. Biophys. 2008, 37, 375-397;
T. Mashima, M. van Stevendaal, F. R. A. Cornelissens, A. F. Mason, B. Rosier, W. J. Altenburg, K. Oohora, S. Hirayama, T. Hayashi, J. C. M. van Hest, L. Brunsveld, Angew. Chem. Int. Ed. 2022, 61, e202115041;
D. Priftis, L. Leon, Z. Song, S. L. Perry, K. O. Margossian, A. Tropnikova, J. Cheng, M. Tirrell, Angew. Chem. Int. Ed. 2015, 54, 11128-11132.
 
A. L. Devries, D. E. Wohlschlag, Science 1969, 163, 1073;
K. Harrison, J. Hallett, T. S. Burcham, R. E. Feeney, W. L. Kerr, Y. Yeh, Nature 1987, 328, 241-243.
 
Z. Liu, X. Zheng, J. Wang, J. Am. Chem. Soc. 2022, 144, 5685-5701;
T. Chang, G. Zhao, Adv. Sci. 2021, 8, 2002425;
M. Dou, C. Lu, W. Rao, Trends Biotechnol. 2022, 40, 93-106.
H. P. Erickson, Biol. Proced. Online 2009, 11, 32-51.
 
A. Bhattacharya, H. Niederholtmeyer, A. P. Kira, R. Bhattacharya, J. J. Song, J. B. Roberto, C. H. Tsai, K. S. Sunil, K. D. Neal, Proc. Natl. Acad. Sci. USA 2020, 117, 18206-18215;
J. A. Riback, C. D. Katanski, J. L. Kear-Scott, E. V. Pilipenko, A. E. Rojek, T. R. Sosnick, D. A. Drummond, Cell 2017, 168, 1028-1040.e1019.
 
J. G. Duman, J. L. Patterson, J. J. Kozak, A. L. DeVries, Biochim. Biophys. Acta Protein Struct. 1980, 626, 332-336;
J. Mugnano, R. Lee, J. Exp. Biol. 1996, 199, 465-471;
H. Tsumuki, H. Konno, Cryobiology 1991, 28, 376-381.
 
C. J. Capicciotti, J. D. R. Kurach, T. R. Turner, R. S. Mancini, J. P. Acker, R. N. Ben, Sci. Rep. 2015, 5, 9692;
C. I. Biggs, C. Stubbs, B. Graham, A. E. R. Fayter, M. Hasan, M. I. Gibson, Macromol. Biosci. 2019, 19, 1900082.
J. N. Israelachvili, D. J. Mitchell, B. W. Ninham, J. Chem. Soc. Faraday Trans. 2 1976, 72, 1525-1568.
W. Zhao, Y. Wang, Adv. Colloid Interface Sci. 2017, 239, 199-212.
 
B. Liu, Y. Fan, H. Li, W. Zhao, S. Luo, H. Wang, B. Guan, Q. Li, J. Yue, Z. Dong, Y. Wang, L. Jiang, Adv. Funct. Mater. 2021, 31, 2006606;
L. Zhou, Y. Fan, Z. Liu, L. Chen, E. Spruijt, Y. Wang, CCS Chem. 2021, 3, 358-366.
J. E. Burke, D. Turnbull, Prog. Met. Phys. 1952, 3, 220-292.
 
J. Wu, S. Chen, Langmuir 2012, 28, 2137-2144;
P. McConville, J. M. Pope, Polymer 2001, 42, 3559-3568;
N. Singha, A. Srivastava, B. Pramanik, S. Ahmed, P. Dowari, S. Chowdhuri, B. K. Das, A. Debnath, D. Das, Chem. Sci. 2019, 10, 5920-5928;
B. Cowan, Nuclear Magnetic Resonance and Relaxation, 1st ed., Cambridge University Press, Cambridge, 1997, DOI: 10.1017/CBO9780511524226.
 
P. Czechura, R. Y. Tam, E. Dimitrijevic, A. V. Murphy, R. N. Ben, J. Am. Chem. Soc. 2008, 130, 2928-2929;
L. E. McMunn, A. S. D'Costa, N. Bordenave, R. N. Ben, J. Phys. Chem. Lett. 2023, 14, 6043-6050.
 
L. Salvati Manni, S. Assenza, M. Duss, J. J. Vallooran, F. Juranyi, S. Jurt, O. Zerbe, E. M. Landau, R. Mezzenga, Nat. Nanotechnol. 2019, 14, 609-615;
S. Cerveny, F. Mallamace, J. Swenson, M. Vogel, L. Xu, Chem. Rev. 2016, 116, 7608-7625.
E. L. Cheluget, S. Gelinas, J. H. Vera, M. E. Weber, J. Chem. Eng. Data 1994, 39, 127-130.
T. Stiernagle, WormBook 2006, 1.101.1, 1-11.
 
Y. Luo, Z. Na, S. A. Slavoff, Biochemistry 2018, 57, 2424-2431;
M. Delarue, G. P. Brittingham, S. Pfeffer, I. V. Surovtsev, S. Pinglay, K. J. Kennedy, M. Schaffer, J. I. Gutierrez, D. Sang, G. Poterewicz, J. K. Chung, J. M. Plitzko, J. T. Groves, C. Jacobs-Wagner, B. D. Engel, L. J. Holt, Cell 2018, 174, 338-349.

Auteurs

Zhang Liu (Z)

Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.

Huimei Cao (H)

Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China.

Yaxun Fan (Y)

Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.

Yilin Wang (Y)

Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China.

Jianjun Wang (J)

Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China.
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China.

Articles similaires

Humans Neoplasms Cell Membrane Inflammation Nanoparticles
Quorum Sensing Cystic Fibrosis Mucus Pseudomonas aeruginosa Humans
1.00
Calcium Carbonate Peptoids Carbon Dioxide Crystallization Microscopy, Atomic Force

Classifications MeSH