Strong Inhibition of Ice Growth by Biomimetic Crowding Coacervates.
Biological Fluids
Coacervate
Crowded Solution
Cryopreservation
Ice Recrystallization
Journal
Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543
Informations de publication
Date de publication:
18 09 2023
18 09 2023
Historique:
received:
01
08
2023
medline:
15
9
2023
pubmed:
3
8
2023
entrez:
3
8
2023
Statut:
ppublish
Résumé
The freezing of biological fluids is intensively studied but remains elusive as it is affected not only by the various components but also by the crowding nature of the biological fluids. Herein, we constructed spherical crowders, fibrous crowders, and coacervates by various components ranging from surfactants to polymers and proteins, to mimic three typical crowders in biological fluids, i.e., globular proteins, fibrous networks, and condensates of biomolecules. It is elucidated that the three crowders exhibit low, moderate, and strong ice growth inhibition activity, respectively, resulting from their different abilities in slowing down water dynamics. Intriguingly, the coacervate consisting of molecules without obvious ice growth inhibition activity strongly inhibits ice growth, which is firstly employed as a highly-potent cryoprotectant. This work provides new insights into the survival of freezing-tolerant organisms and opens an avenue for the design of ice-controlling materials.
Identifiants
pubmed: 37534606
doi: 10.1002/anie.202311047
doi:
Substances chimiques
Ice
0
Antifreeze Proteins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202311047Informations de copyright
© 2023 Wiley-VCH GmbH.
Références
R. J. Ellis, A. P. Minton, Nature 2003, 425, 27;
J. A. Dix, A. S. Verkman, Annu. Rev. Biophys. 2008, 37, 247-263.
T. Ando, J. Skolnick, Proc. Natl. Acad. Sci. USA 2010, 107, 18457-18462;
G. Yan, S. Monnier, M. Mouelhi, T. Dehoux, Proc. Natl. Acad. Sci. USA 2022, 119, e2113614119.
H. X. Zhou, G. Rivas, A. P. Minton, Annu. Rev. Biophys. 2008, 37, 375-397;
T. Mashima, M. van Stevendaal, F. R. A. Cornelissens, A. F. Mason, B. Rosier, W. J. Altenburg, K. Oohora, S. Hirayama, T. Hayashi, J. C. M. van Hest, L. Brunsveld, Angew. Chem. Int. Ed. 2022, 61, e202115041;
D. Priftis, L. Leon, Z. Song, S. L. Perry, K. O. Margossian, A. Tropnikova, J. Cheng, M. Tirrell, Angew. Chem. Int. Ed. 2015, 54, 11128-11132.
A. L. Devries, D. E. Wohlschlag, Science 1969, 163, 1073;
K. Harrison, J. Hallett, T. S. Burcham, R. E. Feeney, W. L. Kerr, Y. Yeh, Nature 1987, 328, 241-243.
Z. Liu, X. Zheng, J. Wang, J. Am. Chem. Soc. 2022, 144, 5685-5701;
T. Chang, G. Zhao, Adv. Sci. 2021, 8, 2002425;
M. Dou, C. Lu, W. Rao, Trends Biotechnol. 2022, 40, 93-106.
H. P. Erickson, Biol. Proced. Online 2009, 11, 32-51.
A. Bhattacharya, H. Niederholtmeyer, A. P. Kira, R. Bhattacharya, J. J. Song, J. B. Roberto, C. H. Tsai, K. S. Sunil, K. D. Neal, Proc. Natl. Acad. Sci. USA 2020, 117, 18206-18215;
J. A. Riback, C. D. Katanski, J. L. Kear-Scott, E. V. Pilipenko, A. E. Rojek, T. R. Sosnick, D. A. Drummond, Cell 2017, 168, 1028-1040.e1019.
J. G. Duman, J. L. Patterson, J. J. Kozak, A. L. DeVries, Biochim. Biophys. Acta Protein Struct. 1980, 626, 332-336;
J. Mugnano, R. Lee, J. Exp. Biol. 1996, 199, 465-471;
H. Tsumuki, H. Konno, Cryobiology 1991, 28, 376-381.
C. J. Capicciotti, J. D. R. Kurach, T. R. Turner, R. S. Mancini, J. P. Acker, R. N. Ben, Sci. Rep. 2015, 5, 9692;
C. I. Biggs, C. Stubbs, B. Graham, A. E. R. Fayter, M. Hasan, M. I. Gibson, Macromol. Biosci. 2019, 19, 1900082.
J. N. Israelachvili, D. J. Mitchell, B. W. Ninham, J. Chem. Soc. Faraday Trans. 2 1976, 72, 1525-1568.
W. Zhao, Y. Wang, Adv. Colloid Interface Sci. 2017, 239, 199-212.
B. Liu, Y. Fan, H. Li, W. Zhao, S. Luo, H. Wang, B. Guan, Q. Li, J. Yue, Z. Dong, Y. Wang, L. Jiang, Adv. Funct. Mater. 2021, 31, 2006606;
L. Zhou, Y. Fan, Z. Liu, L. Chen, E. Spruijt, Y. Wang, CCS Chem. 2021, 3, 358-366.
J. E. Burke, D. Turnbull, Prog. Met. Phys. 1952, 3, 220-292.
J. Wu, S. Chen, Langmuir 2012, 28, 2137-2144;
P. McConville, J. M. Pope, Polymer 2001, 42, 3559-3568;
N. Singha, A. Srivastava, B. Pramanik, S. Ahmed, P. Dowari, S. Chowdhuri, B. K. Das, A. Debnath, D. Das, Chem. Sci. 2019, 10, 5920-5928;
B. Cowan, Nuclear Magnetic Resonance and Relaxation, 1st ed., Cambridge University Press, Cambridge, 1997, DOI: 10.1017/CBO9780511524226.
P. Czechura, R. Y. Tam, E. Dimitrijevic, A. V. Murphy, R. N. Ben, J. Am. Chem. Soc. 2008, 130, 2928-2929;
L. E. McMunn, A. S. D'Costa, N. Bordenave, R. N. Ben, J. Phys. Chem. Lett. 2023, 14, 6043-6050.
L. Salvati Manni, S. Assenza, M. Duss, J. J. Vallooran, F. Juranyi, S. Jurt, O. Zerbe, E. M. Landau, R. Mezzenga, Nat. Nanotechnol. 2019, 14, 609-615;
S. Cerveny, F. Mallamace, J. Swenson, M. Vogel, L. Xu, Chem. Rev. 2016, 116, 7608-7625.
E. L. Cheluget, S. Gelinas, J. H. Vera, M. E. Weber, J. Chem. Eng. Data 1994, 39, 127-130.
T. Stiernagle, WormBook 2006, 1.101.1, 1-11.
Y. Luo, Z. Na, S. A. Slavoff, Biochemistry 2018, 57, 2424-2431;
M. Delarue, G. P. Brittingham, S. Pfeffer, I. V. Surovtsev, S. Pinglay, K. J. Kennedy, M. Schaffer, J. I. Gutierrez, D. Sang, G. Poterewicz, J. K. Chung, J. M. Plitzko, J. T. Groves, C. Jacobs-Wagner, B. D. Engel, L. J. Holt, Cell 2018, 174, 338-349.