Reliability of confocal corneal microscopy for measurement of dendritic cell density in suspected small fiber neuropathy.


Journal

Muscle & nerve
ISSN: 1097-4598
Titre abrégé: Muscle Nerve
Pays: United States
ID NLM: 7803146

Informations de publication

Date de publication:
10 2023
Historique:
revised: 06 07 2023
received: 23 01 2023
accepted: 08 07 2023
medline: 22 9 2023
pubmed: 3 8 2023
entrez: 3 8 2023
Statut: ppublish

Résumé

Dendritic cells (DCs) and their contacts with corneal nerves are described in animal models of nerve damage. Dendritic cell density (DCD) is a potential marker of immune activity in suspected small-fiber neuropathy (SFN). Here, we aim to evaluate the intra- and inter-rater reliability of DCD measurements in suspected SFN. This retrospective study collected DCD from confocal microscopy images from the corneal sub-basal epithelium of the eye from 48 patients (mean age 49.6 ± 12.1 y, 61% female). Two examiners, each blinded to the other's examinations and measurements, assessed DCD to evaluate inter-rater reliability. For intra-rater reliability, the first examiner performed a second measurement after 14 days. DCs were classified into two cell morphological subtypes: mature and immature. Test-retest reliability for total DCD showed excellent agreement, with an intraclass correlation coefficient of 0.96 and inter-rater reliability intraclass correlation coefficient of 0.77. The immature cell subtype showed excellent intra-rater reliability but lower inter-rater reliability. We found that DCD measurements in the corneal sub-basal epithelium are sufficiently reliable for consideration in clinical studies of patients with suspected SFN.

Identifiants

pubmed: 37534704
doi: 10.1002/mus.27948
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

460-463

Informations de copyright

© 2023 The Authors. Muscle & Nerve published by Wiley Periodicals LLC.

Références

Ferrari G, Nallasamy N, Downs H, Dana R, Oaklander AL. Corneal innervation as a window to peripheral neuropathies. Exp Eye Res. 2013;113:148-150. 10.1016/j.exer.2013.05.016
Hertz P, Bril V, Orszag A, et al. Reproducibility of in vivo corneal confocal microscopy as a novel screening test for early diabetic sensorimotor polyneuropathy. Diabet Med. 2011;28:1253-1260. 10.1111/j.1464-5491.2011.03299.x
Smith AG, Kim G, Porzio M, et al. Corneal confocal microscopy is efficient, well-tolerated, and reproducible. J Peripher Nerv Syst. 2013;18:54-58. 10.1111/jns5.12008
Kalteniece A, Ferdousi M, Azmi S, et al. Corneal confocal microscopy detects small nerve fibre damage in patients with painful diabetic neuropathy. Sci Rep. 2020;10:3371. 10.1038/s41598-020-60422-7
Perkins BA, Lovblom LE, Bril V, et al. Corneal confocal microscopy for identification of diabetic sensorimotor polyneuropathy: a pooled multinational consortium study. Diabetologia. 2018;61:1856-1861. 10.1007/s00125-018-4653-8
Pritchard N, Edwards K, Russell AW, Perkins BA, Malik RA, Efron N. Corneal confocal microscopy predicts 4-year incident peripheral neuropathy in type 1 diabetes. Diabetes Care. 2015;38:671-675. 10.2337/dc14-2114
Azmi S, Ferdousi M, Petropoulos IN, et al. Corneal confocal microscopy identifies small-fiber neuropathy in subjects with impaired glucose tolerance who develop type 2 diabetes. Diabetes Care. 2015;38:1502-1508. 10.2337/dc14-2733
Chinnery HR, Zhang XY, Wu CY, Downie LE. Corneal immune cell morphometry as an indicator of local and systemic pathology: a review. Clin Exp Ophthalmol. 2021;49:729-740. 10.1111/ceo.13972
Qian C, Cao X. Dendritic cells in the regulation of immunity and inflammation. Semin Immunol. 2018;35:3-11. 10.1016/j.smim.2017.12.002
Ferdousi M, Romanchuk K, Mah JK, et al. Early corneal nerve fibre damage and increased Langerhans cell density in children with type 1 diabetes mellitus. Sci Rep. 2019;9:8758. 10.1038/s41598-019-45116-z
Stettner M, Hinrichs L, Guthoff R, et al. Corneal confocal microscopy in chronic inflammatory demyelinating polyneuropathy. Ann Clin Transl Neurol. 2016;3:88-100. 10.1002/acn3.275
Bucher F, Schneider C, Blau T, et al. Small-fiber neuropathy is associated with corneal nerve and dendritic cell alterations: an in vivo confocal microscopy study. Cornea. 2015;34:1114-1119. 10.1097/ICO.0000000000000535
Geerts M, de Greef BTA, Sopacua M, et al. Intravenous immunoglobulin therapy in patients with painful idiopathic small fiber neuropathy. Neurology. 2021;96:e2534-e2545. 10.1212/WNL.0000000000011919
Gibbons CH, Klein C. IVIG and small fiber neuropathy: the ongoing search for evidence. Neurology. 2021;96:929-930. 10.1212/WNL.0000000000011921
Bitirgen G, Tinkir Kayitmazbatir E, Satirtav G, Malik RA, Ozkagnici A. In vivo confocal microscopic evaluation of corneal nerve fibers and dendritic cells in patients with Behçet's disease. Front Neurol. 2018;9:204. 10.3389/fneur.2018.00204
Kamel JT, Zhang AC, Downie LE. Corneal epithelial dendritic cell response as a putative marker of neuro-inflammation in small fiber neuropathy. Ocul Immunol Inflamm. 2020;28:898-907. 10.1080/09273948.2019.1643028
Bitirgen G, Korkmaz C, Zamani A, et al. Corneal confocal microscopy identifies corneal nerve fibre loss and increased dendritic cells in patients with long COVID. Br J Ophthalmol. 2021;106:1635-1641. 10.1136/bjophthalmol-2021-319450
Schneider C, Bucher F, Cursiefen C, Fink GR, Heindl LM, Lehmann HC. Corneal confocal microscopy detects small fiber damage in chronic inflammatory demyelinating polyneuropathy (CIDP). J Peripher Nerv Syst. 2014;19:322-327. 10.1111/jns.12098
Klitsch A, Evdokimov D, Frank J, et al. Reduced association between dendritic cells and corneal sub-basal nerve fibers in patients with fibromyalgia syndrome. J Peripher Nerv Syst. 2020;25:9-18. 10.1111/jns.12360
Britten-Jones AC, Rajan R, Craig JP, Downie LE. Quantifying corneal immune cells from human in vivo confocal microscopy images: can manual quantification be improved with observer training? Exp Eye Res. 2022;216:108950. 10.1016/j.exer.2022.108950
Alghamdi A, Tajbakhsh Z, Jalbert I, Stapleton F, Golebiowski B. Repeatability and reliability of density and morphology measurements of corneal and conjunctival epithelial dendritic cells using in vivo confocal microscopy. Invest Ophthalmol Vis Sci. 2021;62:889.
Abraham A, Alabdali M, Alsulaiman A, et al. Laser doppler flare imaging and quantitative thermal thresholds testing performance in small and mixed fiber neuropathies. PloS One. 2016;11:e0165731. 10.1371/journal.pone.0165731
Tavakoli M, Marshall A, Banka S, et al. Corneal confocal microscopy detects small-fiber neuropathy in Charcot-Marie-tooth disease type 1A patients. Muscle Nerve. 2012;46:698-704. 10.1002/mus.23377
Tavakoli M, Marshall A, Thompson L, et al. Corneal confocal microscopy: a novel noninvasive means to diagnose neuropathy in patients with Fabry disease. Muscle Nerve. 2009;40:976-984. 10.1002/mus.21383
Kongkham P, Maurice C, Suppiah S, Zadeh G. Evidence of small-fiber neuropathy in neurofibromatosis type 1. Muscle Nerve. 2019;60:673-678.
Ostrovski I, Lovblom LE, Farooqi MA, et al. Reproducibility of in vivo corneal confocal microscopy using an automated analysis program for detection of diabetic sensorimotor polyneuropathy. PLoS One. 2015;10:e0142309. 10.1371/journal.pone.0142309
Abramoff MD, Magelhaes PJ, Ram SJ. Image processing with Image J. Biophotonics International. 2003;11:36-42.
Zhivov A, Stave J, Vollmar B, Guthoff R. In vivo confocal microscopic evaluation of Langerhans cell density and distribution in the normal human corneal epithelium. Graefes Arch Clin Exp Ophthalmol. 2005;243:1056-1061. 10.1007/s00417-004-1075-8
D'Onofrio L, Kalteniece A, Ferdousi M, et al. Small nerve fiber damage and Langerhans cells in type 1 and type 2 diabetes and LADA measured by corneal confocal microscopy. Invest Ophthalmol Vis Sci. 2021;62:5. 10.1167/iovs.62.6.5
Mastropasqua L, Nubile M, Lanzini M, et al. Epithelial dendritic cell distribution in normal and inflamed human cornea: in vivo confocal microscopy study. Am J Ophthalmol. 2006;142:736-744. 10.1016/j.ajo.2006.06.057
Müller LJ, Marfurt CF, Kruse F, Tervo TMT. Corneal nerves: structure, contents and function. Exp Eye Res. 2003;76:521-542. doi:10.1016/s0014-4835(03)00050-2

Auteurs

Juan Francisco Idiaquez (JF)

Ellen and Martin Prosserman Centre for Neuromuscular Diseases, Division of Neurology, Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada.

Rodrigo Martinez (R)

Ellen and Martin Prosserman Centre for Neuromuscular Diseases, Division of Neurology, Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada.

Carolina Barnett-Tapia (C)

Ellen and Martin Prosserman Centre for Neuromuscular Diseases, Division of Neurology, Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada.

Bruce A Perkins (BA)

Division of Endocrinology and Metabolism, University of Toronto, and the Leadership Sinai Centre for Diabetes, Toronto, Ontario, Canada.

Vera Bril (V)

Ellen and Martin Prosserman Centre for Neuromuscular Diseases, Division of Neurology, Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH