Transition of average drug-to-antibody ratio of trastuzumab deruxtecan in systemic circulation in monkeys using a hybrid affinity capture liquid chromatography-tandem mass spectrometry.
antibody-conjugated DXd
antibody-drug conjugate (ADC)
average drug-to-antibody ratio (average DAR)
total antibody
trastuzumab deruxtecan (T-DXd, DS-8201a)
Journal
Biopharmaceutics & drug disposition
ISSN: 1099-081X
Titre abrégé: Biopharm Drug Dispos
Pays: England
ID NLM: 7911226
Informations de publication
Date de publication:
Oct 2023
Oct 2023
Historique:
revised:
22
06
2023
received:
03
04
2023
accepted:
11
07
2023
pubmed:
3
8
2023
medline:
3
8
2023
entrez:
3
8
2023
Statut:
ppublish
Résumé
Trastuzumab deruxtecan (T-DXd, DS-8201a) is an antibody-drug conjugate, comprising an anti-HER2 antibody at a drug-to-antibody ratio of 7-8 with the topoisomerase I inhibitor DXd. In this study, the concentrations of antibody-conjugated DXd and total antibody were determined and observed to decrease over time following intravenous administration of T-DXd to monkeys. The drug-to-antibody ratio of T-DXd also decreased in a time-dependent manner, which reached approximately 2.5 in 21 days after administration. It was suggested that antibody-conjugated DXd of T-DXd was relatively stable in vivo compared with that of other reported antibody-drug conjugates.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
380-384Informations de copyright
© 2023 John Wiley & Sons Ltd.
Références
Cardillo, T. M., Govindan, S. V., Sharkey, R. M., Trisal, P., Arrojo, R., Liu, D., Rossi, E. A., Chang, C. H., & Goldenberg, D. M. (2015). Sacituzumab govitecan (IMMU-132), an anti-Trop-2/SN-38 antibody-drug conjugate: Characterization and efficacy in pancreatic, gastric, and other cancers. Bioconjugate Chemistry, 26(5), 919-931. https://pubs.acs.org/doi/10.1021/acs.bioconjchem.5b00223
Chang, H. P., Li, Z., & Shah, D. K. (2022). Development of a physiologically-based pharmacokinetic model for whole-body disposition of MMAE containing antibody-drug conjugate in mice. Pharmaceutical Research, 39(1), 1-24. https://doi.org/10.1007/s11095-021-03162-1
Cortes, J., Kim, S. B., Chung, W. P., Im, S. A., Park, Y. H., Hegg, R., Kim, M. H., Tseng, L. M., Petry, V., Chung, C. F., Iwata, H., Hamilton, E., Curigliano, G., Xu, B., Huang, C. S., Chiu, J. W., Pedrini, J. L., Lee, C., & Hurvitz, S. A. (2022). Trastuzumab deruxtecan versus trastuzumab emtansine for breast cancer. New England Journal of Medicine, 386(12), 1143-1154. https://doi.org/10.1056/NEJMoa2115022
Doi, T., Shitara, K., Naito, Y., Shimomura, A., Fujiwara, Y., Yonemori, K., Shimizu, C., Shimoi, T., Kuboki, Y., Matsubara, N., Kitano, A., Jikoh, T., Lee, C., Fujisaki, Y., Ogitani, Y., Yver, A., & Tamura, K. (2017). Safety, pharmacokinetics, and antitumour activity of trastuzumab deruxtecan (DS-8201), a HER2-targeting antibody-drug conjugate, in patients with advanced breast and gastric or gastro-oesophageal tumours: A phase 1 dose-escalation study. The Lancet Oncology, 18(11), 1512-1522. https://doi.org/10.1016/S1470-2045(17)30604-6
Goda, R., & Sudo, K. (2007). Highly sensitive and quantitative analysis of polypeptides using a new gradient system based on an abrupt change in adsorption of polypeptide to the reversed-phase column packing. Biomedical Chromatography, 21(10), 1005-1015. https://doi.org/10.1002/bmc.825
Goda, R., & Sudo, K. (2008). Elution mechanism of polypeptides in reversed-phase liquid chromatography based on the critical threshold of organic solvent to induce abrupt change in adsorption capacity to the column packing. Biomedical Chromatography, 22(1), 81-91. https://doi.org/10.1002/bmc.899
Li, B. T., Smit, E. F., Goto, Y., Nakagawa, K., Udagawa, H., Mazieres, J., Nagasaka, M., Bazhenova, L., Saltos, A. N., Felip, E., Pacheco, J. M., Pérol, M., Paz-Ares, L., Saxena, K., Shiga, R., Cheng, Y., Acharyya, S., Vitazka, P., Shahidi, J., & Jänne, P. A. (2022). Trastuzumab deruxtecan in HER2-mutant non-small-cell lung cancer. New England Journal of Medicine, 386(3), 241-251. https://doi.org/10.1056/NEJMoa2112431
Liu, A., Kozhicha, A., Passmore, D., Gua, H., Wong, R., Zambitoa, F., Rangan, V. S., Myler, H., Aubry, A. F., Arnold, M. E., & Wang, J. (2015). Quantitative bioanalysis of antibody-conjugated payload in monkey plasma using a hybrid immuno-capture LC-MS/MS approach: Assay development, validation, and a case study. Journal of Chromatography B, 1002, 54-62. https://doi.org/10.1016/j.jchromb.2015.08.007
Modi, S., Jacot, W., Yamashita, T., Sohn, J., Vidal, M., Tokunaga, E., Tsurutani, J., Ueno, N. T., Prat, A., Chae, Y. S., Lee, K. S., Niikura, N., Park, Y. H., Xu, B., Wang, X., Gil-Gil, M., Li, W., Pierga, J. Y., Im, S. A., & Cameron, D. A. (2022). Trastuzumab deruxtecan in previously treated HER2-low advanced breast cancer. New England Journal of Medicine, 387(1), 9-20. https://doi.org/10.1056/NEJMoa2203690
Modi, S., Saura, C., Yamashita, T., Park, Y. H., Kim, S. B., Tamura, K., Andre, F., Iwata, H., Ito, Y., Tsurutani, J., Sohn, J., Denduluri, N., Perrin, C., Aogi, K., Tokunaga, E., Lee, K. S., Hurvitz, S. A., Cortes, J., & Krop, I. (2020). Trastuzumab deruxtecan in previously treated HER2-positive breast cancer. New England Journal of Medicine, 382(7), 610-621. https://doi.org/10.1056/NEJMoa1914510
Nagai, Y., Oitate, M., Shiozawa, H., & Ando, O. (2019). Comprehensive preclinical pharmacokinetic evaluations of trastuzumab deruxtecan (DS-8201a), a HER2-targeting antibody-drug conjugate, in cynomolgus monkeys. Xenobiotica, 49(9), 1086-1096. https://doi.org/10.1080/00498254.2018.1531158
Nakada, T., Sugihara, K., Jikoh, T., Abe, Y., & Agatsuma, T. (2019). The latest research and development into the antibody-drug conjugate, [fam-] trastuzumab deruxtecan (DS-8201a), for HER2 cancer therapy. Chemical and Pharmaceutical Bulletin, 67(3), 173-185. https://doi.org/10.1248/cpb.c18-00744
Ogitani, Y., Aida, T., Hagihara, K., Yamaguchi, J., Ishii, C., Harada, N., Soma, M., Okamoto, H., Oitate, M., Arakawa, S., Hirai, T., Atsumi, R., Nakada, T., Hayakawa, I., Abe, Y., & Agatsuma, T. (2016). DS-8201a, a novel HER2-targeting ADC with a novel DNA topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1. Clinical Cancer Research, 22(20), 5097-5108. https://doi.org/10.1158/1078-0432.CCR-15-2822
Ogitani, Y., Hagihara, K., Oitate, M., Naito, H., & Agatsuma, T. (2016). Bystander killing effect of DS-8201a, a novel anti-human epidermal growth factor receptor 2 antibody-drug conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity. Cancer Science, 107(7), 1039-1046. https://doi.org/10.1111/cas.12966
Okamoto, H., Oitate, M., Hagihara, K., Shiozawa, H., Furuta, Y., Ogitani, Y., & Kuga, H. (2020). Pharmacokinetics of trastuzumab deruxtecan (T-DXd), a novel anti-HER2 antibody-drug conjugate, in HER2-positive tumour-bearing mice. Xenobiotica, 50(10), 1242-1250. https://doi.org/10.1080/00498254.2020.1755909
Shitara, K., Bang, Y. J., Iwasa, S., Sugimoto, N., Ryu, M. H., Sakai, D., Chung, H. C., Kawakami, H., Yabusaki, H., Lee, J., Saito, K., Kawaguchi, Y., Kamio, T., Kojima, A., Sugihara, M., & Yamaguchi, K. (2020). Trastuzumab deruxtecan in previously treated HER2-positive gastric cancer. New England Journal of Medicine, 382(25), 2419-2430. https://doi.org/10.1056/NEJMoa2004413
Wei, C., Zhang, G., Clark, T., Barletta, F., Tumey, L. N., Rago, B., Hansel, S., & Han, X. (2016). Where did the linker-payload go? A quantitative investigation on the destination of the released linker-payload from an antibody-drug conjugate with a maleimide linker in plasma. Analytical Chemistry, 88(9), 4979-4986. https://doi.org/10.1021/acs.analchem.6b00976
Yin, O., Iwata, H., Lin, C. C., Tamura, K., Watanabe, J., Wada, R., Kastrissios, H., AbuTarif, M., Garimella, T., Lee, C., Zhang, L., Shahidi, J., & LaCreta, F. (2021). Exposure-response relationships in patients with HER2-positive metastatic breast cancer and other solid tumors treated with trastuzumab deruxtecan. Clinical Pharmacology & Therapeutics, 110(4), 986-996. https://doi.org/10.1002/cpt.2291