Integrative multi-omics analysis of genomic, epigenomic, and metabolomics data leads to new insights for Attention-Deficit/Hyperactivity Disorder.

ADHD DNA methylation genetic nurture metabolites multi-omics polygenic scores

Journal

American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics
ISSN: 1552-485X
Titre abrégé: Am J Med Genet B Neuropsychiatr Genet
Pays: United States
ID NLM: 101235742

Informations de publication

Date de publication:
03 Aug 2023
Historique:
revised: 13 06 2023
received: 22 07 2022
accepted: 11 07 2023
pubmed: 3 8 2023
medline: 3 8 2023
entrez: 3 8 2023
Statut: aheadofprint

Résumé

The evolving field of multi-omics combines data and provides methods for simultaneous analysis across several omics levels. Here, we integrated genomics (transmitted and non-transmitted polygenic scores [PGSs]), epigenomics, and metabolomics data in a multi-omics framework to identify biomarkers for Attention-Deficit/Hyperactivity Disorder (ADHD) and investigated the connections among the three omics levels. We first trained single- and next multi-omics models to differentiate between cases and controls in 596 twins (cases = 14.8%) from the Netherlands Twin Register (NTR) demonstrating reasonable in-sample prediction through cross-validation. The multi-omics model selected 30 PGSs, 143 CpGs, and 90 metabolites. We confirmed previous associations of ADHD with glucocorticoid exposure and the transmembrane protein family TMEM, show that the DNA methylation of the MAD1L1 gene associated with ADHD has a relation with parental smoking behavior, and present novel findings including associations between indirect genetic effects and CpGs of the STAP2 gene. However, out-of-sample prediction in NTR participants (N = 258, cases = 14.3%) and in a clinical sample (N = 145, cases = 51%) did not perform well (range misclassification was [0.40, 0.57]). The results highlighted connections between omics levels, with the strongest connections between non-transmitted PGSs, CpGs, and amino acid levels and show that multi-omics designs considering interrelated omics levels can help unravel the complex biology underlying ADHD.

Identifiants

pubmed: 37534875
doi: 10.1002/ajmg.b.32955
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e32955

Subventions

Organisme : European Research Council
Pays : International
Organisme : ZonMw
ID : 911-09-032
Pays : Netherlands
Organisme : ZonMw
ID : 912-10-020
Pays : Netherlands

Informations de copyright

© 2023 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics published by Wiley Periodicals LLC.

Références

Abdellaoui, A., Hottenga, J. J., de Knijff, P., Nivard, M. G., Xiao, X., Scheet, P., Brooks, A., Ehli, E. A., Hu, Y., Davies, G. E., Hudziak, J. J., Sullivan, P. F., van Beijsterveldt, T., Willemsen, G., de Geus, E. J., Penninx, B. W., & Boomsma, D. I. (2013). Population structure, migration, and diversifying selection in the Netherlands. European Journal of Human Genetics, 21(11), 1277-1285. https://doi.org/10.1038/ejhg.2013.48
Anand, N. S., Ji, Y., Wang, G., Hong, X., van der Rijn, M., Riley, A., Pearson, C., Zuckerman, B., & Wang, X. (2021). Maternal and cord plasma branched-chain amino acids and child risk of attention-deficit hyperactivity disorder: A prospective birth cohort study. Journal of Child Psychology and Psychiatry, 62(7), 868-875. https://doi.org/10.1111/jcpp.13332
Argelaguet, R., Velten, B., Arnol, D., Dietrich, S., Zenz, T., Marioni, J. C., Buettner, F., Huber, W., & Stegle, O. (2018). Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets. Molecular Systems Biology, 14(6), e8124. https://doi.org/10.15252/msb.20178124
Barban, N., Jansen, R., de Vlaming, R., Vaez, A., Mandemakers, J. J., Tropf, F. C., Shen, X., Wilson, J. F., Chasman, D. I., Nolte, I. M., Tragante, V., van der Laan, S. W., Perry, J. R., Kong, A., BIOS Consortium, Ahluwalia, T. S., Albrecht, E., Yerges-Armstrong, L., Atzmon, G., Auro, K., … Mills, M. C. (2016). Genome-wide analysis identifies 12 loci influencing human reproductive behavior. Nature Genetics, 48, 1462-1472. https://doi.org/10.1038/ng.3698
Barros, S. P., & Offenbacher, S. (2009). Epigenetics: Connecting environment and genotype to phenotype and disease. Journal of Dental Research, 88(5), 400-408. https://doi.org/10.1177/0022034509335868
Bartels, M., Hendriks, A., Mauri, M., Krapohl, E., Whipp, A., Bolhuis, K., Conde, L. C., Luningham, J., Fung Ip, H., Hagenbeek, F., Roetman, P., Gatej, R., Lamers, A., Nivard, M., van Dongen, J., Lu, Y., Middeldorp, C., van Beijsterveldt, T., Vermeiren, R., … Boomsma, D. I. (2018). Childhood aggression and the co-occurrence of behavioural and emotional problems: Results across ages 3-16 years from multiple raters in six cohorts in the EU-ACTION project. European Child & Adolescent Psychiatry, 27(9), 1105-1121. https://doi.org/10.1007/s00787-018-1169-1
Baselmans, B. M. L., Jansen, R., Ip, H. F., van Dongen, J., Abdellaoui, A., van de Weijer, M. P., Bao, Y., Smart, M., Kumari, M., Willemsen, G., Hottenga, J. J., BIOS consortium, Social Science Genetic Association Consortium, Boomsma, D. I., de Geus, E. J. C., Nivard, M. G., & Bartels, M. (2019). Multivariate genome-wide analyses of the well-being spectrum. Nature Genetics, 51, 445-451. https://doi.org/10.1038/s41588-018-0320-8
Beck, J. J., Hottenga, J. J., Mbarek, H., Finnicum, C. T., Ehli, E. A., Hur, Y. M., Martin, N. G., de Geus, E. J. C., Boomsma, D. I., & Davies, G. E. (2019). Genetic similarity assessment of twin-family populations by custom-designed genotyping array. Twin Research and Human Genetics, 22(4), 210-219. https://doi.org/10.1017/thg.2019.41
Benyamin, B., Pourcain, B., Davis, O. S., Davies, G., Hansell, N. K., Brion, M. J., Kirkpatrick, R. M., Cents, R. A., Franić, S., Miller, M. B., Haworth, C. M., Meaburn, E., Price, T. S., Evans, D. M., Timpson, N., Kemp, J., Ring, S., McArdle, W., Medland, S. E., … Visscher, P. M. (2014). Childhood intelligence is heritable, highly polygenic and associated with FNBP1L. Molecular Psychiatry, 19(2), 253-258. https://doi.org/10.1038/mp.2012.184.
Bonvicini, C., Faraone, S. V., & Scassellati, C. (2016). Attention-deficit hyperactivity disorder in adults: A systematic review and meta-analysis of genetic, pharmacogenetic and biochemical studies. Molecular Psychiatry, 21(11), 1643. https://doi.org/10.1038/mp.2016.128
Bonvicini, C., Faraone, S. V., & Scassellati, C. (2018). Common and specific genes and peripheral biomarkers in children and adults with attention-deficit/hyperactivity disorder. The World Journal of Biological Psychiatry, 19(2), 80-100. https://doi.org/10.1080/15622975.2017.1282175
Boomsma, D. I., Wijmenga, C., Slagboom, E. P., Swertz, M. A., Karssen, L. C., Abdellaoui, A., Ye, K., Guryev, V., Vermaat, M., van Dijk, F., Francioli, L. C., Hottenga, J. J., Laros, J. F., Li, Q., Li, Y., Cao, H., Chen, R., Du, Y., Li, N., … van Duijn, C. M. (2014). The Genome of the Netherlands: design, and project goals. European Journal of Human Genetics: EJHG, 22(2), 221-227. https://doi.org/10.1038/ejhg.2013.118
Braun, P. R., Tanaka-Sahker, M., Chan, A. C., Jellison, S. S., Klisares, M. J., Hing, B. W., Shabbir, Y., Gaul, L. N., Nagahama, Y., Robles, J., Heinzman, J. T., Sabbagh, S., Cramer, E. M., Duncan, G. N., Yuki, K., Close, L. N., Dlouhy, B. J., Howard, M. A., 3rd, Kawasaki, H., … Shinozaki, G. (2019). Genome-wide DNA methylation investigation of glucocorticoid exposure within buccal samples. Psychiatry and Clinical Neurosciences, 73(6), 323-330. https://doi.org/10.1111/pcn.12835
Cabana-Domínguez, J., Soler Artigas, M., Arribas, L., Alemany, S., Vilar-Ribó, L., Llonga, N., Fadeuilhe, C., Corrales, M., Richarte, V., Ramos-Quiroga, J. A., & Ribasés, M. (2022). Comprehensive analysis of omics data identifies relevant gene networks for Attention-Deficit/Hyperactivity Disorder (ADHD). Translational Psychiatry, 12(1), 1-9. https://doi.org/10.1038/s41398-022-02182-8
Caye, A., Swanson, J. M., Coghill, D., & Rohde, L. A. (2019). Treatment strategies for ADHD: An evidence-based guide to select optimal treatment. Molecular Psychiatry, 24(3), 390-408. https://doi.org/10.1038/s41380-018-0116-3
Chakraborty, S., Hosen, M. I., Ahmed, M., & Shekhar, H. U. (2018). Onco-Multi-OMICS Approach: A New Frontier in Cancer Research. BioMed Research International, 2018, 9836256. https://doi.org/10.1155/2018/9836256
Cheng, S., Wen, Y., Ma, M., Zhang, L., Liu, L., Qi, X., Cheng, B., Liang, C., Li, P., Kafle, O. P., & Zhang, F. (2020). Identifying 5 common psychiatric disorders associated chemicals through integrative analysis of genome-wide association study and chemical-gene interaction datasets. Schizophrenia Bulletin, 46(5), 1182-1190. https://doi.org/10.1093/schbul/sbaa053
Clayton, D. (1999). A generalization of the transmission/disequilibrium test for uncertain-haplotype transmission. American Journal of Human Genetics, 65(4), 1170-1177. https://doi.org/10.1086/302577
Csala, A., Zwinderman, A. H., & Hof, M. H. (2020). Multiset sparse partial least squares path modeling for high dimensional omics data analysis. BMC Bioinformatics, 21(1), 1-21. https://doi.org/10.1186/S12859-019-3286-3/FIGURES/7
Das, S., Forer, L., Schönherr, S., Sidore, C., Locke, A. E., Kwong, A., Vrieze, S. I., Chew, E. Y., Levy, S., McGue, M., Schlessinger, D., Stambolian, D., Loh, P. R., Iacono, W. G., Swaroop, A., Scott, L. J., Cucca, F., Kronenberg, F., Boehnke, M., … Fuchsberger, C. (2016). Next-generation genotype imputation service and methods. Nature Genetics, 48(10), 1284-1287. https://doi.org/10.1038/ng.3656
De Zeeuw, E. L., Hottenga, J. J., Ouwens, K. G., Dolan, C. V., Ehli, E. A., Davies, G. E., Boomsma, D. I., & Van Bergen, E. (2020). Intergenerational transmission of Education and ADHD: Effects of parental genotypes. Behavior Genetics, 50, 221-232. https://doi.org/10.1007/s10519-020-09992-w
Dekkers, K. F., van Iterson, M., Slieker, R. C., Moed, M. H., Bonder, M. J., van Galen, M., Mei, H., Zhernakova, D. v., Van Den Berg, L. H., Deelen, J., van Dongen, J., van Heemst, D., Hofman, A., Hottenga, J. J., Van Der Kallen, C. J. H., Schalkwijk, C. G., Stehouwer, C. D. A., Tigchelaar, E. F., Uitterlinden, A. G., … Heijmans, B. T. (2016). Blood lipids influence DNA methylation in circulating cells. Genome Biology, 17(1), 1-12. https://doi.org/10.1186/S13059-016-1000-6/TABLES/6
Delaneau, O., & Zagury, J. F. (2012). Haplotype inference. Methods in Molecular Biology (Clifton N.J.), 888, 177-196. https://doi.org/10.1007/978-1-61779-870-2_11
Demontis, D., Walters, R. K., Martin, J., Mattheisen, M., Als, T. D., Agerbo, E., Baldursson, G., Belliveau, R., Bybjerg-Grauholm, J., Baekvad-Hansen, M., Cerrato, F., Chambert, K., Churchhouse, C., Dumont, A., Eriksson, N., Gandal, M., Goldstein, J. I., Grasby, K. L., Grove, J., … Neale, B. M. (2019). Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nature Genetics, 51(1), 63-75. https://doi.org/10.1038/s41588-018-0269-7
Demontis, D., Walters, R. K., Rajagopal, V. M., Waldman, I. D., Grove, J., Als, T. D., Dalsgaard, S., Ribases, M., Bybjerg-Grauholm, J., Baekvad-Hansen, M., Werge, T., Nordentoft, M., Mors, O., Mortensen, P. B., ADHD Working Group of the Psychiatric Genomics Consortium (PGC), Cormand, B., Hougaard, D. M., Neale, B. M., Franke, B., … Borglum, A. D. (2021). Risk variants and polygenic architecture of disruptive behavior disorders in the context of attention-deficit/hyperactivity disorder. Nature Communications, 12(1), 576. https://doi.org/10.1038/s41467-020-20443-2
Demontis, D., Walters, G. B., Athanasiadis, G., Walters, R., Therrien, K., Nielsen, T. T., Farajzadeh, L., Voloudakis, G., Bendl, J., Zeng, B., Zhang, W., Grove, J., Als, T. D., Duan, J., Satterstrom, F. K., Bybjerg-Grauholm, J., Baekved-Hansen, M., Gudmundsson, O. O., Magnusson, S. H., … Børglum, A. D. (2023). Genome-wide analyses of ADHD identify 27 risk loci, refine the genetic architecture and implicate several cognitive domains. Nature Genetics, 55(2), 198-208. https://doi.org/10.1038/s41588-022-01285-8
Derks, E. M., Hudziak, J. J., Dolan, C. v., Van Beijsterveldt, T. C., Verhulst, F. C., & Boomsma, D. I. (2008). Genetic and environmental influences on the relation between attention problems and attention deficit hyperactivity disorder. Behavior Genetics, 38(1), 11-23. https://doi.org/10.1007/s10519-007-9178-8
Distel, M. A., Carlier, A., Middeldorp, C. M., Derom, C. A., Lubke, G. H., & Boomsma, D. I. (2011). Borderline personality traits and adult attention-deficit hyperactivity disorder symptoms: A genetic analysis of comorbidity. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 156B(7), 817-825. https://doi.org/10.1002/AJMG.B.31226
Duruflé, H., Selmani, M., Ranocha, P., Jamet, E., Dunand, C., & Déjean, S. (2021). A powerful framework for an integrative study with heterogeneous omics data: from univariate statistics to multi-block analysis. Briefings in Bioinformatics, 22(3), bbaa166. https://doi.org/10.1093/bib/bbaa166
Ehli, E. A., Abdellaoui, A., Fedko, I. O., Grieser, C., Nohzadeh-Malakshah, S., Willemsen, G., de Geus, E. J., Boomsma, D. I., Davies, G. E., & Hottenga, J. J. (2017). A method to customize population-specific arrays for genome-wide association testing. European Journal of Human Genetics: EJHG, 25(2), 267-270. https://doi.org/10.1038/ejhg.2016.152
Elia, J., Laracy, S., Allen, J., Nissley-Tsiopinis, J., & Borgmann-Winter, K. (2012). Epigenetics: Genetics versus life experiences. Current Topics in Behavioral Neurosciences, 9, 317-340. https://doi.org/10.1007/7854_2011_144
Faraone, S. V., Banaschewski, T., Coghill, D., Zheng, Y., Biederman, J., Bellgrove, M. A., Newcorn, J. H., Gignac, M., Al Saud, N. M., Manor, I., Rohde, L. A., Yang, L., Cortese, S., Almagor, D., Stein, M. A., Albatti, T. H., Aljoudi, H. F., Alqahtani, M. M. J., Asherson, P., … Wang, Y. (2021). The World Federation of ADHD International Consensus Statement: 208 evidence-based conclusions about the disorder. Neuroscience and Biobehavioral Reviews, 128, 789-818. https://doi.org/10.1016/J.NEUBIOREV.2021.01.022
Faraone, S. V., Larsson, H., & Org, S. (2018). Genetics of attention deficit hyperactivity disorder. Molecular Psychiatry, 24(4), 562-575. https://doi.org/10.1038/s41380-018-0070-0
Friedrichs, B., Igl, W., Larsson, H., & Larsson, J. O. (2012). Coexisting psychiatric problems and stressful life events in adults with symptoms of ADHD-A large Swedish population-based study of twins. Journal of Attention Disorders, 16(1), 13-22. https://doi.org/10.1177/1087054710376909
Galili, T. (2015). Dendextend: An R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics, 31(22), 3718-3720. https://doi.org/10.1093/BIOINFORMATICS/BTV428
Gomez-Alonso, M. D. C., Kretschmer, A., Wilson, R., Pfeiffer, L., Karhunen, V., Seppälä, I., Zhang, W., Mittelstraß, K., Wahl, S., Matias-Garcia, P. R., Prokisch, H., Horn, S., Meitinger, T., Serrano-Garcia, L. R., Sebert, S., Raitakari, O., Loh, M., Rathmann, W., Müller-Nurasyid, M., Herder, C., … Waldenberger, M. (2021). DNA methylation and lipid metabolism: an EWAS of 226 metabolic measures. Clinical Epigenetics, 13, 7. https://doi.org/10.1186/s13148-020-00957-8
Goodman, S. J., Burton, C. L., Butcher, D. T., Siu, M. T., Lemire, M., Chater-Diehl, E., Turinsky, A. L., Brudno, M., Soreni, N., Rosenberg, D., Fitzgerald, K. D., Hanna, G. L., Anagnostou, E., Arnold, P. D., Crosbie, J., Schachar, R., & Weksberg, R. (2020). Obsessive-compulsive disorder and attention-deficit/hyperactivity disorder: Distinct associations with DNA methylation and genetic variation. Journal of Neurodevelopmental Disorders, 12(1), 23. https://doi.org/10.1186/s11689-020-09324-3
Grimm, O., Kranz, T. M., & Reif, A. (2020). Genetics of ADHD: What should the clinician know? Current Psychiatry Reports, 22(4), 18. https://doi.org/10.1007/s11920-020-1141-x
Grove, J., Ripke, S., Als, T. D., Mattheisen, M., Walters, R. K., Won, H., Pallesen, J., Agerbo, E., Andreassen, O. A., Anney, R., Awashti, S., Belliveau, R., Bettella, F., Buxbaum, J. D., Bybjerg-Grauholm, J., Baekvad-Hansen, M., Cerrato, F., Chambert, K., Christensen, J. H., … Børglum, A. D. (2019). Identification of common genetic risk variants for autism spectrum disorder. Nature Genetics, 51(3), 431-444. https://doi.org/10.1038/s41588-019-0344-8
Hagenbeek, F. A., Kluft, C., Hankemeier, T., Bartels, M., Draisma, H. H., Middeldorp, C. M., Berger, R., Noto, A., Lussu, M., Pool, R., Fanos, V., & Boomsma, D. I. (2016). Discovery of biochemical biomarkers for aggression: A role for metabolomics in psychiatry. American journal of medical genetics. Part B, Neuropsychiatric genetics: the official publication of the International Society of. Psychiatric Genetics, 171(5), 719-732. https://doi.org/10.1002/ajmg.b.32435
Hagenbeek, F. A., Pool, R., van Dongen, J., Draisma, H. H. M., Jan Hottenga, J., Willemsen, G., Abdellaoui, A., Fedko, I. O., Den Braber, A., Visser, P. J., De Geus, E., Willems van Dijk, K., Verhoeven, A., Suchiman, H. E., Beekman, M., Slagboom, P. E., van Duijn, C. M., BBMRI Metabolomics Consortium, Harms, A. C., … Boomsma, D. I. (2020). Heritability estimates for 361 blood metabolites across 40 genome-wide association studies. Nature Communications, 11(1), 39. https://doi.org/10.1038/s41467-019-13770-6
Hagenbeek, F. A., Roetman, P. J., Pool, R., Kluft, C., Harms, A. C., van Dongen, J., Colins, O. F., Talens, S., van Beijsterveldt, C. E. M., Vandenbosch, M., de Zeeuw, E. L., Dejean, S., Fanos, V., Ehli, E. A., Davies, G. E., Hottenga, J. J., Hankemeier, T., Bartels, M., Vermeiren, R., & Boomsma, D. I. (2020). Urinary amine and organic acid metabolites evaluated as markers for childhood aggression: The ACTION biomarker study. Frontiers in Psychiatry, 11, 165. https://doi.org/10.3389/fpsyt.2020.00165
Hagenbeek, F. A., van Dongen, J., Pool, R., Harms, A. C., Roetman, P. J., Fanos, V., van Keulen, B. J., Walker, B. R., Karu, N., Hulshoff Pol, H. E., Rotteveel, J., Finken, M. J. J., Vermeiren, R. R. J. M., Kluft, C., Bartels, M., Hankemeier, T., & Boomsma, D. I. (2022). Heritability of urinary amines, organic acids, and steroid hormones in children. Metabolites, 12(6), 474. https://doi.org/10.3390/METABO12060474
Hagenbeek, F. A., van Dongen, J., Pool, R., Roetman, P. J., Harms, A. C., Hottenga, J. J., Kluft, C., Colins, O. F., van Beijsterveldt, C. E. M., Fanos, V., Ehli, E. A., Hankemeier, T., Vermeiren, R. R. J. M., Bartels, M., Déjean, S., & Boomsma, D. I. (2023). Integrative multi-omics analysis of childhood aggressive behavior. Behavior Genetics, 53, 101-117. https://doi.org/10.1007/s10519-022-10126-7
Hamza, M., Halayem, S., Bourgou, S., Daoud, M., Charfi, F., & Belhadj, A. (2019). Epigenetics and ADHD: Toward an integrative approach of the disorder pathogenesis. Journal of Attention Disorders, 23(7), 655-664. https://doi.org/10.1177/1087054717696769
Harpin, V. A. (2005). The effect of ADHD on the life of an individual, their family, and community from preschool to adult life. Archives of Disease in Childhood, 90(Suppl 1), i2-i7. https://doi.org/10.1136/adc.2004.059006
Hasin, Y., Seldin, M., & Lusis, A. (2017). Multi-omics approaches to disease. Genome Biology, 18(1), 83. https://doi.org/10.1186/s13059-017-1215-1
Hood, E. (2005). Tap water and trihalomethanes: flow of concerns continues. Environmental Health Perspectives, 113(7), A474.
Ikeda, M., Takahashi, A., Kamatani, Y., Okahisa, Y., Kunugi, H., Mori, N., Sasaki, T., Ohmori, T., Okamoto, Y., Kawasaki, H., Shimodera, S., Kato, T., Yoneda, H., Yoshimura, R., Iyo, M., Matsuda, K., Akiyama, M., Ashikawa, K., Kashiwase, K., … Iwata, N. (2018). A genome-wide association study identifies two novel susceptibility loci and trans population polygenicity associated with bipolar disorder. Molecular Psychiatry, 23(3), 639-647. https://doi.org/10.1038/MP.2016.259
Ip, H. F., van der Laan, C. M., Krapohl, E. M. L., Brikell, I., Sánchez-Mora, C., Nolte, I. M., St Pourcain, B., Bolhuis, K., Palviainen, T., Zafarmand, H., Colodro-Conde, L., Gordon, S., Zayats, T., Aliev, F., Jiang, C., Wang, C. A., Saunders, G., Karhunen, V., Hammerschlag, A. R., … Boomsma, D. I. (2021). Genetic association study of childhood aggression across raters, instruments, and age. Translational Psychiatry, 11(1), 413. https://doi.org/10.1038/s41398-021-01480-x
Jansen, P. R., Watanabe, K., Stringer, S., Skene, N., Bryois, J., Hammerschlag, A. R., de Leeuw, C. A., Benjamins, J. S., Muñoz-Manchado, A. B., Nagel, M., Savage, J. E., Tiemeier, H., White, T., Tung, J. Y., Hinds, D. A., Vacic, V., Wang, X., Sullivan, P. F., van der Sluis, S., … Posthuma, D. (2019). Genome-wide analysis of insomnia in 1, 331, 010 individuals identifies new risk loci and functional pathways. Nature Genetics, 51(3), 394-403. https://doi.org/10.1038/s41588-018-0333-3
Joseph, N., Zhang-James, Y., Perl, A., & Faraone, S. V. (2015). Oxidative stress and ADHD: A meta-analysis. Journal of Attention Disorders, 19(11), 915-924. https://doi.org/10.1177/1087054713510354
Kong, A., Thorleifsson, G., Frigge, M. L., Vilhjalmsson, B. J., Young, A. I., Thorgeirsson, T. E., Benonisdottir, S., Oddsson, A., Halldorsson, B. v., Masson, G., Gudbjartsson, D. F., Helgason, A., Bjornsdottir, G., Thorsteinsdottir, U., & Stefansson, K. (2018). The nature of nurture: Effects of parental genotypes. Science, 359(6374), 424-428. https://doi.org/10.1126/science.aan6877
Lee, J. J., Wedow, R., Okbay, A., Kong, E., Maghzian, O., Zacher, M., Nguyen-Viet, T. A., Bowers, P., Sidorenko, J., Karlsson Linnér, R., Fontana, M. A., Kundu, T., Lee, C., Li, H., Li, R., Royer, R., Timshel, P. N., Walters, R. K., Willoughby, E. A., … Cesarini, D. (2018). Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nature Genetics, 50(8), 1112-1121. https://doi.org/10.1038/s41588-018-0147-3
Levy, F., Hay, D. A., McStephen, M., Wood, C., & Waldman, I. (1997). Attention-deficit hyperactivity disorder: A category or a continuum? Genetic analysis of a large-scale twin study. Journal of the American Academy of Child and Adolescent Psychiatry, 36(6), 737-744. https://doi.org/10.1097/00004583-199706000-00009
Ligthart, L., van Beijsterveldt, C. E. M., Kevenaar, S. T., de Zeeuw, E., van Bergen, E., Bruins, S., Pool, R., Helmer, Q., van Dongen, J., Hottenga, J. J., Van't Ent, D., Dolan, C. V., Davies, G. E., Ehli, E. A., Bartels, M., Willemsen, G., de Geus, E. J. C., & Boomsma, D. I. (2019). The netherlands twin register: longitudinal research based on twin and twin-family designs. Twin Research and Human Genetics, 22(6), 623-636. https://doi.org/10.1017/thg.2019.93
Liu, J., Li, X., & Luo, X. J. (2021). Proteome-wide association study provides insights into the genetic component of protein abundance in psychiatric disorders. Biological Psychiatry, 90(11), 781-789. https://doi.org/10.1016/j.biopsych.2021.06.022
Liu, M., Jiang, Y., Wedow, R., Li, Y., Brazel, D. M., Chen, F., Datta, G., Davila-Velderrain, J., McGuire, D., Tian, C., Zhan, X., HUNT All-In Psychiatry, Choquet, H., Docherty, A. R., Faul, J. D., Foerster, J. R., Fritsche, L. G., Gabrielsen, M. E., Gordon, S. D., … Vrieze, S. (2019). Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nature Genetics, 51(2), 237-244. https://doi.org/10.1038/s41588-018-0307-5
Liu, X., & Locasale, J. W. (2017). Metabolomics: A primer. Trends in Biochemical Sciences, 42(4), 274-284. https://doi.org/10.1016/j.tibs.2017.01.004
Lo-Castro, A., D'Agati, E., & Curatolo, P. (2011). ADHD and genetic syndromes. Brain & Development, 33(6), 456-461. https://doi.org/10.1016/j.braindev.2010.05.011
Loh, P. R., Palamara, P. F., & Price, A. L. (2016). Fast and accurate long-range phasing in a UK Biobank cohort. Nature Genetics, 48(7), 811-816. https://doi.org/10.1038/ng.3571
Luo, Y., Weibman, D., Halperin, J. M., & Li, X. (2019). A review of heterogeneity in attention deficit/hyperactivity disorder (ADHD). Frontiers in Human Neuroscience, 13, 42. https://doi.org/10.3389/fnhum.2019.00042
Martel, M. M., Goth-Owens, T., Martinez-Torteya, C., & Nigg, J. T. (2010). A person-centered personality approach to heterogeneity in attention-deficit/hyperactivity disorder (ADHD). Journal of Abnormal Psychology, 119(1), 186-196. https://doi.org/10.1037/a0017511
Meijer, M., Klein, M., Hannon, E., van der Meer, D., Hartman, C., Oosterlaan, J., Heslenfeld, D., Hoekstra, P. J., Buitelaar, J., Mill, J., & Franke, B. (2020). Genome-wide DNA methylation patterns in persistent attention-deficit/hyperactivity disorder and in association with impulsive and callous traits. Frontiers in Genetics, 11, 16. https://doi.org/10.3389/FGENE.2020.00016/BIBTEX
Middeldorp, C. M., Hammerschlag, A. R., Ouwens, K. G., Groen-Blokhuis, M. M., St. Pourcain, B., Greven, C. U., Pappa, I., Tiesler, C. M. T., Ang, W., Nolte, I. M., Vilor-Tejedor, N., Bacelis, J., Ebejer, J. L., Zhao, H., Davies, G. E., Ehli, E. A., Evans, D. M., Fedko, I. O., Guxens, M., … Boomsma, D. I. (2016). A genome-wide association meta-analysis of attention-deficit/hyperactivity disorder symptoms in population-based pediatric cohorts. Journal of the American Academy of Child & Adolescent Psychiatry, 55(10), 896-905.e6. https://doi.org/10.1016/J.JAAC.2016.05.025
Min, J. L., Hemani, G., Davey Smith, G., Relton, C., & Suderman, M. (2018). Meffil: Efficient normalization and analysis of very large DNA methylation datasets. Bioinformatics, 34(23), 3983-3989. https://doi.org/10.1093/bioinformatics/bty476
Min, J. L., Hemani, G., Hannon, E., Dekkers, K. F., Castillo-Fernandez, J., Luijk, R., Carnero-Montoro, E., Lawson, D. J., Burrows, K., Suderman, M., Bretherick, A. D., Richardson, T. G., Klughammer, J., Iotchkova, V., Sharp, G., Al Khleifat, A., Shatunov, A., Iacoangeli, A., McArdle, W. L., Ho, K. M., … Relton, C. L. (2021). Genomic and phenotypic insights from an atlas of genetic effects on DNA methylation. Nature Genetics, 53(9), 1311-1321. https://doi.org/10.1038/s41588-021-00923-x
Mooney, M. A., Ryabinin, P., Wilmot, B., Bhatt, P., Mill, J., & Nigg, J. T. (2020). Large epigenome-wide association study of childhood ADHD identifies peripheral DNA methylation associated with disease and polygenic risk burden. Translational Psychiatry, 10(1), 8. https://doi.org/10.1038/s41398-020-0710-4
Moore, L. D., Le, T., & Fan, G. (2013). DNA methylation and its basic function. Neuropsychopharmacology, 38(1), 23-38. https://doi.org/10.1038/npp.2012.112
Moran, S., Arribas, C., & Esteller, M. (2016). Validation of a DNA methylation microarray for 850, 000 CpG sites of the human genome enriched in enhancer sequences. Epigenomics, 8(3), 389-399. https://doi.org/10.2217/epi.15.114
Neumann, A., Walton, E., Alemany, S., Cecil, C., González, J. R., Jima, D. D., Lahti, J., Tuominen, S. T., Barker, E. D., Binder, E., Caramaschi, D., Carracedo, Á., Czamara, D., Evandt, J., Felix, J. F., Fuemmeler, B. F., Gutzkow, K. B., Hoyo, C., Julvez, J., … Tiemeier, H. (2020). Association between DNA methylation and ADHD symptoms from birth to school age: A prospective meta-analysis. Translational Psychiatry, 10(1), 1-11. https://doi.org/10.1038/s41398-020-01058-z
Price, A., Patterson, N., Plenge, R., Weinblatt, M. E., Shadick, N. A., & Reich, D. (2006). Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics, 38, 904-909. https://doi.org/10.1038/ng1847
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., Maller, J., Sklar, P., de Bakker, P. I., Daly, M. J., & Sham, P. C. (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 81(3), 559-575. https://doi.org/10.1086/519795
Rajasundaram, D., & Selbig, J. (2016). More effort - more results: Recent advances in integrative “omics” data analysis. Current Opinion in Plant Biology, 30, 57-61. https://doi.org/10.1016/j.pbi.2015.12.010
Reale, L., Bartoli, B., Cartabia, M., Zanetti, M., Costantino, M. A., Canevini, M. P., Termine, C., Bonati, M., & Lombardy, A. G. (2017). Comorbidity prevalence and treatment outcome in children and adolescents with ADHD. European Child & Adolescent Psychiatry, 26(12), 1443-1457. https://doi.org/10.1007/s00787-017-1005-z
Rijlaarsdam, J., Cecil, C. A. M., Walton, E., Mesirow, M. S. C., Relton, C. L., Gaunt, T. R., McArdle, W., & Barker, E. D. (2017). Prenatal unhealthy diet, insulin-like growth factor 2 gene (IGF2) methylation, and attention deficit hyperactivity disorder symptoms in youth with early-onset conduct problems. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 58(1), 19-27. https://doi.org/10.1111/JCPP.12589
Ripke, S., Neale, B. M., Corvin, A., Walters, J. T. R., Farh, K. H., Holmans, P. A., Lee, P., Bulik-Sullivan, B., Collier, D. A., Huang, H., Pers, T. H., Agartz, I., Agerbo, E., Albus, M., Alexander, M., Amin, F., Bacanu, S. A., Begemann, M., Belliveau, R. A., … O'Donovan, M. C. (2014). Biological insights from 108 schizophrenia-associated genetic loci. Nature, 511(7510), 421-427. https://doi.org/10.1038/nature13595
Roehr, B. (2013). American Psychiatric Association explains DSM-5. BMJ, 346, f3591. https://doi.org/10.1136/BMJ.F3591
Rohart, F., Gautier, B., Singh, A., & le Cao, K. A. (2017). mixOmics: An R package for 'omics feature selection and multiple data integration. PLoS Computational Biology, 13(11), e1005752. https://doi.org/10.1371/journal.pcbi.1005752
Rovira, P., Demontis, D., Sanchez-Mora, C., Zayats, T., Klein, M., Mota, N. R., Weber, H., Garcia-Martinez, I., Pagerols, M., Vilar-Ribo, L., Arribas, L., Richarte, V., Corrales, M., Fadeuilhe, C., Bosch, R., Martin, G. E., Almos, P., Doyle, A. E., Grevet, E. H., … Ribases, M. (2020). Shared genetic background between children and adults with attention deficit/hyperactivity disorder. Neuropsychopharmacology, 45(10), 1617-1626. https://doi.org/10.1038/s41386-020-0664-5
Rovira, P., Sanchez-Mora, C., Pagerols, M., Richarte, V., Corrales, M., Fadeuilhe, C., Vilar-Ribo, L., Arribas, L., Shireby, G., Hannon, E., Mill, J., Casas, M., Ramos-Quiroga, J. A., Soler Artigas, M., & Ribases, M. (2020). Epigenome-wide association study of attention-deficit/hyperactivity disorder in adults. Translational Psychiatry, 10(1), 199. https://doi.org/10.1038/s41398-020-0860-4
Savage, J. E., Jansen, P. R., Stringer, S., Watanabe, K., Bryois, J., de Leeuw, C. A., Nagel, M., Awasthi, S., Barr, P. B., Coleman, J. R. I., Grasby, K. L., Hammerschlag, A. R., Kaminski, J. A., Karlsson, R., Krapohl, E., Lam, M., Nygaard, M., Reynolds, C. A., Trampush, J. W., … Posthuma, D. (2018). Genome-wide association meta-analysis in 269, 867 individuals identifies new genetic and functional links to intelligence. Nature Genetics, 50(7), 912-919. https://doi.org/10.1038/s41588-018-0152-6
Singh, A., Shannon, C. P., Gautier, B., Rohart, F., Vacher, M., Tebbutt, S. J., & le Cao, K. A. (2019). DIABLO: An integrative approach for identifying key molecular drivers from multi-omics assays. Bioinformatics, 35(17), 3055-3062. https://doi.org/10.1093/bioinformatics/bty1054
Sinke, L., van Iterson, M., Cats, D., Slieker, R., & Heijmans, B. (2019). DNAmArray: Streamlined workflow for the quality control, normalization, and analysis of Illumina methylation array data. Zenodo. https://doi.org/10.5281/ZENODO.3355292
van Beijsterveldt, C. E., Groen-Blokhuis, M., Hottenga, J. J., Franić, S., Hudziak, J. J., Lamb, D., Huppertz, C., de Zeeuw, E., Nivard, M., Schutte, N., Swagerman, S., Glasner, T., van Fulpen, M., Brouwer, C., Stroet, T., Nowotny, D., Ehli, E. A., Davies, G. E., Scheet, P., Orlebeke, J. F., … Boomsma, D. I. (2013). The Young Netherlands Twin Register (YNTR): longitudinal twin and family studies in over 70, 000 children. Twin Research and Human Genetics, 16(1), 252-267. https://doi.org/10.1017/thg.2012.118
van Dongen, J., Nivard, M. G., Willemsen, G., Hottenga, J. J., Helmer, Q., Dolan, C. V., Ehli, E. A., Davies, G. E., van Iterson, M., Breeze, C. E., Beck, S., BIOS Consortium, Suchiman, H. E., Jansen, R., van Meurs, J. B., Heijmans, B. T., Slagboom, P. E., & Boomsma, D. I. (2016). Genetic and environmental influences interact with age and sex in shaping the human methylome. Nature Communications, 7, 11115. https://doi.org/10.1038/ncomms11115
van Dongen, J., Zilhao, N. R., Sugden, K., Consortium, B., Hannon, E. J., Mill, J., Caspi, A., Agnew-Blais, J., Arseneault, L., Corcoran, D. L., Moffitt, T. E., Poulton, R., Franke, B., & Boomsma, D. I. (2019). Epigenome-wide association study of attention-deficit/hyperactivity disorder symptoms in adults. Biological Psychiatry, 86(8), 599-607. https://doi.org/10.1016/j.biopsych.2019.02.016
van Iterson, M., Cats, D., Hop, P., Consortium, B., & Heijmans, B. T. (2018). omicsPrint: Detection of data linkage errors in multiple omics studies. Bioinformatics, 34(12), 2142-2143. https://doi.org/10.1093/bioinformatics/bty062
Van Iterson, M., Tobi, E. W., Slieker, R. C., den Hollander, W., Luijk, R., Slagboom, P. E., & Heijmans, B. T. (2014). Methyl Aid: visual and interactive quality control of large Illumina 450k datasets. Bioinformatics (Oxford, England), 30(23), 3435-3437. https://doi.org/10.1093/bioinformatics/btu566
Vilhjálmsson, B. J., Yang, J., Finucane, H. K., Gusev, A., Lindström, S., Ripke, S., Genovese, G., Loh, P. R., Bhatia, G., Do, R., Hayeck, T., Won, H. H., Schizophrenia Working Group of the Psychiatric Genomics Consortium, Discovery, Biology, Risk of Inherited Variants in Breast Cancer (DRIVE) study, Kathiresan, S., Pato, M., Pato, C., Tamimi, R., Stahl, E., … Price, A. L. (2015). Modeling linkage disequilibrium increases accuracy of polygenic risk scores. American Journal of Human Genetics, 97(4), 576-592. https://doi.org/10.1016/j.ajhg.2015.09.00
Walton, E. (2019). Epigenome-wide associations with attention-deficit/hyperactivity disorder in adults: The need for a longitudinal life course approach in epigenetic psychiatry. Biological Psychiatry, 86(8), 570-572. https://doi.org/10.1016/j.biopsych.2019.07.021
Walton, E., Pingault, J. B., Cecil, C. A., Gaunt, T. R., Relton, C. L., Mill, J., & Barker, E. D. (2017). Epigenetic profiling of ADHD symptoms trajectories: A prospective, methylome-wide study. Molecular Psychiatry, 22(2), 250-256. https://doi.org/10.1038/mp.2016.85
Wang, L. J., Chou, W. J., Tsai, C. S., Lee, M. J., Lee, S. Y., Hsu, C. W., Hsueh, P. C., & Wu, C. C. (2021). Novel plasma metabolite markers of attention-deficit/hyperactivity disorder identified using high-performance chemical isotope labelling-based liquid chromatography-mass spectrometry. The World Journal of Biological Psychiatry, 22, 139-148. https://doi.org/10.1080/15622975.2020.1762930
Watanabe, K., Stringer, S., Frei, O., Umićević Mirkov, M., de Leeuw, C., Polderman, T. J. C., van der Sluis, S., Andreassen, O. A., Neale, B. M., & Posthuma, D. (2019). A global overview of pleiotropy and genetic architecture in complex traits. Nature Genetics, 51(9), 1339-1348. https://doi.org/10.1038/s41588-019-0481-0
Whalen, S., Schreiber, J., Noble, W. S., & Pollard, K. S. (2021). Navigating the pitfalls of applying machine learning in genomics. Nature Reviews Genetics, 23(3), 169-181. https://doi.org/10.1038/s41576-021-00434-9
Wörheide, M. A., Krumsiek, J., Kastenmüller, G., & Arnold, M. (2021). Multi-omics integration in biomedical research-A metabolomics-centric review. Analytica Chimica Acta, 1141, 144-162. https://doi.org/10.1016/J.ACA.2020.10.038
Wray, N. R., Ripke, S., Mattheisen, M., Trzaskowski, M., Byrne, E. M., Abdellaoui, A., Adams, M. J., Agerbo, E., Air, T. M., Andlauer, T. M. F., Bacanu, S. A., Baekvad-Hansen, M., Beekman, A. F. T., Bigdeli, T. B., Binder, E. B., Blackwood, D. R. H., Bryois, J., Buttenschøn, H. N., Bybjerg-Grauholm, J., Cai, N., … Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium. (2018). Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nature Genetics, 50(5), 668-681. https://doi.org/10.1038/s41588-018-0090-3
Xiong, Z., Yang, F., Li, M., Ma, Y., Zhao, W., Wang, G., Li, Z., Zheng, X., Zou, D., Zong, W., Kang, H., Jia, Y., Li, R., Zhang, Z., & Bao, Y. (2022). EWAS open platform: Integrated data, knowledge and toolkit for epigenome-wide association study. Nucleic Acids Research, 50(D1), D1004-D1009. https://doi.org/10.1093/NAR/GKAB972
Yu, M. C., Wang, T. M., Chiou, Y. H., Yu, M. K., Lin, C. F., & Chiu, C. Y. (2021). Urine metabolic phenotyping in children with nocturnal enuresis and comorbid neurobehavioral disorders. Scientific Reports, 11(1), 16592. https://doi.org/10.1038/s41598-021-96104-1
Zheng, S. C., Webster, A. P., Dong, D., Feber, A., Graham, D. G., Sullivan, R., Jevons, S., Lovat, L. B., Beck, S., Widschwendter, M., & Teschendorff, A. E. (2018). A novel cell-type deconvolution algorithm reveals substantial contamination by immune cells in saliva, buccal and cervix. Epigenomics, 10(7), 925-940. https://doi.org/10.2217/EPI-2018-0037/ASSET/IMAGES/LARGE/FIGURE6.JPEG

Auteurs

Nikki Hubers (N)

Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, the Netherlands.
Amsterdam Public Health Research Institute, Amsterdam, the Netherlands.

Fiona A Hagenbeek (FA)

Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
Amsterdam Public Health Research Institute, Amsterdam, the Netherlands.

René Pool (R)

Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
Amsterdam Public Health Research Institute, Amsterdam, the Netherlands.

Sébastien Déjean (S)

Toulouse Mathematics Institute, UMR 5219, University of Toulouse, CNRS, Toulouse, France.

Amy C Harms (AC)

Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands.
The Netherlands Metabolomics Centre, Leiden, The Netherlands.

Peter J Roetman (PJ)

LUMC-Curium, Department of Child and Adolescent Psychiatry, Leiden University Medical Center, Leiden, the Netherlands.

Catharina E M van Beijsterveldt (CEM)

Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.

Vassilios Fanos (V)

Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, Cagliari, Italy.

Erik A Ehli (EA)

Avera Institute for Human Genetics, Sioux Falls, South Dakota, USA.

Robert R J M Vermeiren (RRJM)

LUMC-Curium, Department of Child and Adolescent Psychiatry, Leiden University Medical Center, Leiden, the Netherlands.
Youz, Parnassia Group, the Netherlands.

Meike Bartels (M)

Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
Amsterdam Public Health Research Institute, Amsterdam, the Netherlands.

Jouke Jan Hottenga (JJ)

Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.

Thomas Hankemeier (T)

Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands.
The Netherlands Metabolomics Centre, Leiden, The Netherlands.

Jenny van Dongen (J)

Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, the Netherlands.
Amsterdam Public Health Research Institute, Amsterdam, the Netherlands.

Dorret I Boomsma (DI)

Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, the Netherlands.
Amsterdam Public Health Research Institute, Amsterdam, the Netherlands.

Classifications MeSH