A 0.67 μV-IIRN super-T Ω-Z


Journal

IEEE transactions on biomedical circuits and systems
ISSN: 1940-9990
Titre abrégé: IEEE Trans Biomed Circuits Syst
Pays: United States
ID NLM: 101312520

Informations de publication

Date de publication:
03 Aug 2023
Historique:
medline: 3 8 2023
pubmed: 3 8 2023
entrez: 3 8 2023
Statut: aheadofprint

Résumé

We present the design, development, and experimental characterization of an active electrode (AE) IC for wearable ambulatory EEG recording. The proposed architecture features in-AE double common-mode (CM) rejection, making the recording's CMRR independent of typically-significant AE-to-AE gain variations. Thanks to being DC coupled and needless of chopper stabilization for flicker noise suppression, the architecture yields a super-T Ω input impedance. Such a large input impedance makes the AE's CMRR practically immune to electrode-skin interface impedance variations across different recording channels, a critical feature for dry-electrode ambulatory systems. Signal quantization and serialization are also performed in-AE, which enables a distributed system in which all AEs use a single data bus for data/command communication to the backend module, thus significantly improving the system's scalability. Additionally, the presented AE hosts auxiliary modules for (i) detection of an unstable electrode-skin connection through continuous interface impedance monitoring, (ii) dynamic measurement and adjustment of input DC level, and (iii) a CM feedback loop for further CMRR enhancement. The paper also presents the development of printed (extrusion) tattoo electrodes and their experimental characterization results with the proposed AE architecture. Besides bio-compatibility, low-cost, pattern flexibility, and quick fabrication process, the printed electrodes offer a very stable electrode-skin connection, conform to scalp shape, and exhibit consistent performance under various bending curvatures. Analog circuit blocks of the presented AE architecture are designed and fabricated using a standard 180 nm CMOS technology, and the 1×1.3 mm

Identifiants

pubmed: 37535484
doi: 10.1109/TBCAS.2023.3301554
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Auteurs

Classifications MeSH