Cytotoxic activity of quinolinequinones in cancer: In vitro studies, molecular docking, and ADME/PK profiling.


Journal

Chemical biology & drug design
ISSN: 1747-0285
Titre abrégé: Chem Biol Drug Des
Pays: England
ID NLM: 101262549

Informations de publication

Date de publication:
11 2023
Historique:
revised: 11 07 2023
received: 12 04 2023
accepted: 19 07 2023
medline: 23 10 2023
pubmed: 4 8 2023
entrez: 3 8 2023
Statut: ppublish

Résumé

Lead molecules containing 1,4-quinone moiety are intriguing novel compounds that can be utilized to treat cancer owing to their antiproliferative activities. Nine previously reported quinolinequinones (AQQ1-9) were studied to better understand their inhibitory profile to produce potent and possibly safe lead molecules. The National Cancer Institute (NCI) of Bethesda chose all quinolinequinones (AQQ1-9) based on the NCI Developmental Therapeutics Program and tested them against a panel of 60 cancer cell lines. At a single dose and five further doses, AQQ7 significantly inhibited the proliferation of all leukemia cell lines and some breast cancer cell lines. We investigated the in vitro cytotoxic activities of the most promising compounds, AQQ2 and AQQ7, in MCF7 and T-47D breast cancer cells, DU-145 prostate cancer cells, HCT-116 and COLO 205 colon cancer cell lines, and HaCaT human keratinocytes using the MTT assay. AQQ7 showed particularly high cytotoxicity against MCF7 cells. Further analysis showed that AQQ7 exhibits anticancer activity through the induction of apoptosis without causing cell cycle arrest or oxidative stress. Molecular docking simulations for AQQ2 and AQQ7 were conducted against the COX, PTEN, and EGFR proteins, which are commonly overexpressed in breast, cervical, and prostate cancers. The in vitro ADME and in vivo PK profiling of these compounds have also been reported.

Identifiants

pubmed: 37537000
doi: 10.1111/cbdd.14314
doi:

Substances chimiques

Antineoplastic Agents 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1133-1154

Informations de copyright

© 2023 John Wiley & Sons Ltd.

Références

Adasme, M. F., Linnemann, K. L., Bolz, S. N., Kaiser, F., Salentin, S., Haupt, V. J., & Schroeder, M. (2021). PLIP 2021: Expanding the scope of the protein-ligand interaction profiler to DNA and RNA. Nucleic Acids Research, 49(W1), W530-W534. https://doi.org/10.1093/nar/gkab294
Alfarouk, K. O., Stock, C. M., Taylor, S., Walsh, M., Muddathir, A. K., Verduzco, D., Bashir, A. H., Mohammed, O. Y., Elhassan, G. O., Harguindey, S., Reshkin, S. J., Ibrahim, M. E., & Rauch, C. (2015). Resistance to cancer chemotherapy: Failure in drug response from ADME to P-gp. Cancer Cell International, 15, 71. https://doi.org/10.1186/s12935-015-0221-1
Ambrose, M., Ryan, A., Dunne, C., O'Sullivan, G. C., & Barry, O. P. (2005). Induction of apoptosis in 786-0 renal cell carcinoma by reactive oxygen species is ERK1/2-, p38δ and γ MAPK- and Pak-1-dependent but JNK-independent. Cancer Research, 65(9_Supplement), 241.
Basset, G. J., Latimer, S., Fatihi, A., Soubeyrand, E., & Block, A. (2017). Phylloquinone (vitamin K1): Occurrence, biosynthesis and functions. Mini Reviews in Medicinal Chemistry, 17(12), 1028-1038. https://doi.org/10.2174/1389557516666160623082714
Bayrak, N., Ciftci, H. I., Yildiz, M., Yildirim, H., Sever, B., Tateishi, H., Otsuka, M., Fujita, M., & Tuyun, A. F. (2021). Structure based design, synthesis, and evaluation of anti-CML activity of the quinolinequinones as LY83583 analogs. Chemico-Biological Interactions, 345, 109555. https://doi.org/10.1016/j.cbi.2021.109555
Bayrak, N., Yildirim, H., Yildiz, M., Radwan, M. O., Otsuka, M., Fujita, M., Tuyun, A. F., & Ciftci, H. I. (2019). Design, synthesis, and biological activity of Plastoquinone analogs as a new class of anticancer agents. Bioorganic Chemistry, 92, 103255. https://doi.org/10.1016/j.bioorg.2019.103255
Bayrak, N., Yildirim, H., Yildiz, M., Radwan, M. O., Otsuka, M., Fujita, M., Ciftci, H. I., & Tuyun, A. F. (2020). A novel series of chlorinated plastoquinone analogs: Design, synthesis, and evaluation of anticancer activity. Chemical Biology & Drug Design, 95(3), 343-354. https://doi.org/10.1111/cbdd.13651
Borba-Santos, L. P., Nicoletti, C. D., Vila, T., Ferreira, P. G., Araujo-Lima, C. F., Galvao, B. V. D., Felzenszwalb, I., de Souza, W., de Carvalho da Silva, F., Ferreira, V. F., Futuro, D. O., & Rozental, S. (2022). A novel naphthoquinone derivative shows selective antifungal activity against Sporothrix yeasts and biofilms. Brazilian Journal of Microbiology, 53(2), 749-758. https://doi.org/10.1007/s42770-022-00725-1
Boyd, M. R., & Paull, K. D. (1995). Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen. Drug Development Research, 34(2), 91-109. https://doi.org/10.1002/ddr.430340203
Brady, S. W., Gout, A. M., & Zhang, J. (2022). Therapeutic and prognostic insights from the analysis of cancer mutational signatures. Trends in Genetics, 38(2), 194-208. https://doi.org/10.1016/j.tig.2021.08.007
Carneiro, B. A., & El-Deiry, W. S. (2020). Targeting apoptosis in cancer therapy. Nature Reviews. Clinical Oncology, 17(7), 395-417. https://doi.org/10.1038/s41571-020-0341-y
Cheung-Ong, K., Giaever, G., & Nislow, C. (2013). DNA-damaging agents in cancer chemotherapy: Serendipity and chemical biology. Chemistry & Biology, 20(5), 648-659. https://doi.org/10.1016/j.chembiol.2013.04.007
Ciftci, H., Sever, B., Bayrak, N., Yildiz, M., Yildirim, H., Tateishi, H., Otsuka, M., Fujita, M., & TuYuN, A. F. (2022). In vitro cytotoxicity evaluation of Plastoquinone analogues against colorectal and breast cancers along with In Silico insights. Pharmaceuticals (Basel), 15(10), 1266. https://doi.org/10.3390/ph15101266
Ciftci, H., Sever, B., Ocak, F., Bayrak, N., Yildiz, M., Yildirim, H., DeMirci, H., Tateishi, H., Otsuka, M., Fujita, M., & TuYuN, A. F. (2022). In vitro and in silico study of analogs of plant product Plastoquinone to be effective in colorectal cancer treatment. Molecules, 27(3), 693. https://doi.org/10.3390/molecules27030693
Ciftci, H. I., Bayrak, N., Yildirim, H., Yildiz, M., Radwan, M. O., Otsuka, M., Fujita, M., & Tuyun, A. F. (2019). Discovery and structure-activity relationship of plastoquinone analogs as anticancer agents against chronic myelogenous leukemia cells. Archiv der Pharmazie (Weinheim), 352(12), e1900170. https://doi.org/10.1002/ardp.201900170
Cuartas, V., Aragon-Muriel, A., Liscano, Y., Polo-Ceron, D., Crespo-Ortiz, M. D. P., Quiroga, J., Abonia, R., & Insuasty, B. (2021). Anticancer activity of pyrimidodiazepines based on 2-chloro-4-anilinoquinazoline: Synthesis, DNA binding and molecular docking. RSC Advances, 11(38), 23310-23329. https://doi.org/10.1039/d1ra03509f
Dahlem Junior, M. A., Nguema Edzang, R. W., Catto, A. L., & Raimundo, J. M. (2022). Quinones as an efficient molecular scaffold in the antibacterial/antifungal or Antitumoral arsenal. International Journal of Molecular Sciences, 23(22), 14108. https://doi.org/10.3390/ijms232214108
Dasari, K., Somarelli, J. A., Kumar, S., & Townsend, J. P. (2021). The somatic molecular evolution of cancer: Mutation, selection, and epistasis. Progress in Biophysics and Molecular Biology, 165, 56-65. https://doi.org/10.1016/j.pbiomolbio.2021.08.003
Di Marco, N. I., Paez, P. L., Lucero-Estrada, C. S. M., & Pungitore, C. R. (2021). Naphthoquinones inhibit formation and viability of Yersinia enterocolitica biofilm. World Journal of Microbiology and Biotechnology, 37(2), 30. https://doi.org/10.1007/s11274-020-02971-7
Dos Santos, J. P. S., Ribeiro, R. C. B., Faria, J. V., Bello, M. L., Lima, C. G. S., Pauli, F. P., Borges, A. A., Rocha, D. R., Moraes, M. G., Forezi, L. S. M., Ferreira, V. F., Faria, R. X., & da Silva, F. C. (2022). Synthesis, biological evaluation and molecular modeling studies of novel 1,2,3-triazole-linked menadione-furan derivatives as P2X7 inhibitors. Journal of Bioenergetics and Biomembranes, 54(5-6), 227-239. https://doi.org/10.1007/s10863-022-09947-2
Gonzalez-Conchas, G. A., Rodriguez-Romo, L., Hernandez-Barajas, D., Gonzalez-Guerrero, J. F., Rodriguez-Fernandez, I. A., Verdines-Perez, A., Templeton, A. J., Ocana, A., Seruga, B., Tannock, I. F., Amir, E., & Vera-Badillo, F. E. (2018). Epidermal growth factor receptor overexpression and outcomes in early breast cancer: A systematic review and a meta-analysis. Cancer Treatment Reviews, 62, 1-8. https://doi.org/10.1016/j.ctrv.2017.10.008
Grever, M. R., Schepartz, S. A., & Chabner, B. A. (1992). The National Cancer Institute: Cancer drug discovery and development program. Seminars in Oncology, 19(6), 622-638. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/1462164
Gupta, R., Luxami, V., & Paul, K. (2021). Insights of 8-hydroxyquinolines: A novel target in medicinal chemistry. Bioorganic Chemistry, 108, 104633. https://doi.org/10.1016/j.bioorg.2021.104633
Harris, R. E., Casto, B. C., & Harris, Z. M. (2014). Cyclooxygenase-2 and the inflammogenesis of breast cancer. World Journal of Clinical Oncology, 5(4), 677-692. https://doi.org/10.5306/wjco.v5.i4.677
Hirsch, F. R., Varella-Garcia, M., Bunn, P. A., Jr., Di Maria, M. V., Veve, R., Bremmes, R. M., Baron, A. E., Zeng, C., & Franklin, W. A. (2003). Epidermal growth factor receptor in non-small-cell lung carcinomas: Correlation between gene copy number and protein expression and impact on prognosis. Journal of Clinical Oncology, 21(20), 3798-3807. https://doi.org/10.1200/JCO.2003.11.069
Holohan, C., Van Schaeybroeck, S., Longley, D. B., & Johnston, P. G. (2013). Cancer drug resistance: An evolving paradigm. Nature Reviews. Cancer, 13(10), 714-726. https://doi.org/10.1038/nrc3599
Housman, G., Byler, S., Heerboth, S., Lapinska, K., Longacre, M., Snyder, N., & Sarkar, S. (2014). Drug resistance in cancer: An overview. Cancers (Basel), 6(3), 1769-1792. https://doi.org/10.3390/cancers6031769
Ibacache, J. A., Valderrama, J. A., Arancibia, V., Theoduloz, C., Muccioli, G. G., & Benites, J. (2016). Antiproliferative activity of new 6-bromine derivatives of 7-Anilino-1-Arylisoquinolinequinones. Journal of the Chilean Chemical Society, 61(4), 3191-3194. https://doi.org/10.4067/s0717-97072016000400008
Ibis, C., Tuyun, A. F., Ozsoy-Gunes, Z., Bahar, H., Stasevych, M. V., Musyanovych, R. Y., Komarovska-Porokhnyavets, O., & Novikov, V. (2011). Synthesis and biological evaluation of novel nitrogen- and sulfur-containing hetero-1,4-naphthoquinones as potent antifungal and antibacterial agents. European Journal of Medicinal Chemistry, 46(12), 5861-5867. https://doi.org/10.1016/j.ejmech.2011.09.048
Jannuzzi, A. T., Yildiz, M., Bayrak, N., Yildirim, H., Shilkar, D., Jayaprakash, V., & TuYuN, A. F. (2021). Anticancer agents based on Plastoquinone analogs with N-phenylpiperazine: Structure-activity relationship and mechanism of action in breast cancer cells. Chemico-Biological Interactions, 349, 109673. https://doi.org/10.1016/j.cbi.2021.109673
Jannuzzi, A. T., Yilmaz Goler, A. M., Bayrak, N., Yildiz, M., Yildirim, H., Karademir Yilmaz, B., Shilkar, D., Venkatesan, R. J., Jayaprakash, V., & TuYuN, A. F. (2022). Exploring the anticancer effects of brominated plastoquinone analogs with promising cytotoxic activity in MCF-7 breast cancer cells via cell cycle arrest and oxidative stress induction. Pharmaceuticals (Basel), 15(7), 777. https://doi.org/10.3390/ph15070777
Kadela, M., Jastrzebska, M., Bebenek, E., Chrobak, E., Latocha, M., Kusz, J., Ksiazek, M., & Boryczka, S. (2016). Synthesis, structure and cytotoxic activity of mono- and Dialkoxy derivatives of 5,8-Quinolinedione. Molecules, 21(2), 156. https://doi.org/10.3390/molecules21020156
Kara, E. M., Bayrak, N., Yildirim, H., Yildiz, M., Celik, B. O., & Tuyun, A. F. (2020). Chlorinated plastoquinone analogs that inhibit Staphylococcus epidermidis and Candida albicans growth. Folia Microbiologia (Praha), 65(5), 785-795. https://doi.org/10.1007/s12223-020-00783-8
Kim, S. J., Kim, H. S., & Seo, Y. R. (2019). Understanding of ROS-inducing strategy in anticancer therapy. Oxidative Medicine and Cellular Longevity, 2019, 5381692. https://doi.org/10.1155/2019/5381692
Kim, Y. S., Park, S. Y., Lee, H. J., Suh, M. E., Schollmeyer, D., & Lee, C. O. (2003). Synthesis and cytotoxicity of 6,11-dihydro-pyrido- and 6,11-dihydro-benzo[2,3-b]phenazine-6,11-dione derivatives. Bioorganic & Medicinal Chemistry, 11(8), 1709-1714. https://doi.org/10.1016/s0968-0896(03)00028-2
Kimura, Y. (2005). New anticancer agents: In vitro and in vivo evaluation of the antitumor and antimetastatic actions of various compounds isolated from medicinal plants. In Vivo, 19(1), 37-60. Retrieved from <Go to ISI>://WOS:000227883600004.
Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. ACS Publications.
Lima, C. G. S., de Souza, A. S., Pauli, F. P., Ribeiro, R. C. B., Borges, A. d. A., Ferreira, P. G., da Silva, F. d. C., Ferreira, V. F., & da Forezi, L. S. M. (2021). Functional group transformation in naphthoquinones: Strategies for the synthesis of mono- and Bis(Amino-1,4-naphthoquinones). Current Organic Chemistry, 25(19), 2156-2174. https://doi.org/10.2174/1385272825666210811121450
Lopez-Lira, C., Tapia, R. A., Herrera, A., Lapier, M., Maya, J. D., Soto-Delgado, J., Oliver, A. G., Graham Lappin, A., & Uriarte, E. (2021). New benzimidazolequinones as trypanosomicidal agents. Bioorganic Chemistry, 111, 104823. https://doi.org/10.1016/j.bioorg.2021.104823
Mahalapbutr, P., Leechaisit, R., Thongnum, A., Todsaporn, D., Prachayasittikul, V., Rungrotmongkol, T., Prachayasittikul, S., Ruchirawat, S., Prachayasittikul, V., & Pingaew, R. (2022). Discovery of Anilino-1,4-naphthoquinones as potent EGFR tyrosine kinase inhibitors: Synthesis, biological evaluation, and comprehensive molecular modeling. ACS Omega, 7(21), 17881-17893. https://doi.org/10.1021/acsomega.2c01188
Majolo, F., de Oliveira Becker Delwing, L. K., Marmitt, D. J., Bustamante-Filho, I. C., & Goettert, M. I. (2019). Medicinal plants and bioactive natural compounds for cancer treatment: Important advances for drug discovery. Phytochemistry Letters, 31, 196-207. https://doi.org/10.1016/j.phytol.2019.04.003
Markopoulos, G. S., Roupakia, E., Tokamani, M., Chavdoula, E., Hatziapostolou, M., Polytarchou, C., Marcu, K. B., Papavassiliou, A. G., Sandaltzopoulos, R., & Kolettas, E. (2017). A step-by-step microRNA guide to cancer development and metastasis. Cellular Oncology (Dordrecht), 40(4), 303-339. https://doi.org/10.1007/s13402-017-0341-9
Mctigue, M. A., Davies, J. F., II, Kaufman, B. T., Xuong, N.-H., & Kraut, J. (1993). Crystal structures of Organomercurial-activated chicken liver Dihydrofolate reductase complexes. Publication no. https://doi.org/10.2210/pdb1DR5/pdb)
Monks, A., Scudiero, D., Skehan, P., Shoemaker, R., Paull, K., Vistica, D., Hose, C., Langley, J., Cronise, P., Vaigro-Wolff, A., Gray-Goodrich, M., Campbell, H., Mayo, J., & Boyd, M. (1991). Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. Journal of the National Cancer Institute, 83(11), 757-766. https://doi.org/10.1093/jnci/83.11.757
Nagar, B., & Dhar, B. B. (2022). Visible light-mediated Thiolation of substituted 1,4-naphthoquinones using eosin Y as a Photoredox catalyst. The Journal of Organic Chemistry, 87(5), 3195-3201. https://doi.org/10.1021/acs.joc.1c02924
Okeke, I. N., Klugman, K. P., Bhutta, Z. A., Duse, A. G., Jenkins, P., O'Brien, T. F., Pablos-Mendez, A., & Laxminarayan, R. (2005). Antimicrobial resistance in developing countries. Part II: Strategies for containment. The Lancet Infectious Diseases, 5(9), 568-580. https://doi.org/10.1016/S1473-3099(05)70217-6
Pauli, F. P., Freitas, C. S., Pereira, P. R., Magalhaes, A., de Carvalho da Silva, F., Paschoalin, V. M. F., & Ferreira, V. F. (2023). Exploring the antimicrobial and Antitumoral activities of naphthoquinone-grafted Chitosans. Polymers (Basel), 15(6), 1430. https://doi.org/10.3390/polym15061430
Pettersen, E., Goddard, T., Huang, C., Couch, G., Greenblatt, D., Meng, E., & Ferrin, T. (2004). UCSF chimera-A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605-1612.
Razaghi, A., Heimann, K., Schaeffer, P. M., & Gibson, S. B. (2018). Negative regulators of cell death pathways in cancer: Perspective on biomarkers and targeted therapies. Apoptosis, 23(2), 93-112. https://doi.org/10.1007/s10495-018-1440-4
Ricci, M. S., & Zong, W. X. (2006). Chemotherapeutic approaches for targeting cell death pathways. The Oncologist, 11(4), 342-357. https://doi.org/10.1634/theoncologist.11-4-342
Shaikh, I. A., Johnson, F., & Grollman, A. P. (1986). Streptonigrin. 1. Structure-activity relationships among simple bicyclic analogues. Rate dependence of DNA degradation on quinone reduction potential. Journal of Medicinal Chemistry, 29(8), 1329-1340. https://doi.org/10.1021/jm00158a002
Song, G., Zhong, B., Zhang, B., Rehman, A. U., & Chen, H. F. (2023). Phosphorylation modification force field FB18CMAP improving conformation sampling of phosphoproteins. Journal of Chemical Information and Modeling, 63(5), 1602-1614. https://doi.org/10.1021/acs.jcim.3c00112
Stamos, J., Sliwkowski, M. X., & Eigenbrot, C. (2002). Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. The Journal of Biological Chemistry, 277(48), 46265-46272. https://doi.org/10.1074/jbc.M207135200
Uysal, S., Soyer, Z., Saylam, M., Tarikogullari, A. H., Yilmaz, S., & Kirmizibayrak, P. B. (2021). Design, synthesis and biological evaluation of novel naphthoquinone-4-aminobenzensulfonamide/carboxamide derivatives as proteasome inhibitors. European Journal of Medicinal Chemistry, 209, 112890. https://doi.org/10.1016/j.ejmech.2020.112890
Valdes-Tresanco, M. S., Valdes-Tresanco, M. E., Valiente, P. A., & Moreno, E. (2020). AMDock: A versatile graphical tool for assisting molecular docking with Autodock Vina and Autodock4. Biology Direct, 15(1), 12. https://doi.org/10.1186/s13062-020-00267-2
van Oijen, M. G., & Slootweg, P. J. (2000). Gain-of-function mutations in the tumor suppressor gene p53. Clinical Cancer Research, 6(6), 2138-2145.
Varricchio, C., Beirne, K., Aeschlimann, P., Heard, C., Rozanowska, M., Votruba, M., & Brancale, A. (2020). Discovery of novel 2-Aniline-1,4-naphthoquinones as potential new drug treatment for Leber's hereditary optic neuropathy (LHON). Journal of Medicinal Chemistry, 63(22), 13638-13655. https://doi.org/10.1021/acs.jmedchem.0c00942
Veronesi, U., & Boyle, P. (2017). Breast cancer. In S. R. Quah (Ed.), International encyclopedia of public health (pp. 272-280). Academic Press.
Wellington, K. W. (2015). Understanding cancer and the anticancer activities of naphthoquinones - A review. RSC Advances, 5(26), 20309-20338. https://doi.org/10.1039/c4ra13547d
World Cancer Day. (2021). Breast cancer overtakes lung cancer in terms of number of new cancer cases worldwide. Retrieved from https://www.iarc.who.int/infographics/world-cancer-day-2021/
Xu, S., Uddin, M. J., Banerjee, S., Duggan, K., Musee, J., Kiefer, J. R., Ghebreselasie, K., Rouzer, C. A., & Marnett, L. J. (2019). Fluorescent indomethacin-dansyl conjugates utilize the membrane-binding domain of cyclooxygenase-2 to block the opening to the active site. The Journal of Biological Chemistry, 294(22), 8690-8698. https://doi.org/10.1074/jbc.RA119.007405
Yildirim, H., Bayrak, N., Yildiz, M., Mataraci-Kara, E., Korkmaz, S., Shilkar, D., Jayaprakash, V., & TuYuN, A. F. (2022). Aminated Quinolinequinones as privileged scaffolds for antibacterial agents: Synthesis, In vitro evaluation, and putative mode of action. ACS Omega, 7(46), 41915-41928. https://doi.org/10.1021/acsomega.2c03193
Yilmaz Goler, A. M., Jannuzzi, A. T., Bayrak, N., Yildiz, M., Yildirim, H., Otsuka, M., Fujita, M., Radwan, M. O., & TuYuN, A. F. (2022). In vitro and In Silico study to assess toxic mechanisms of hybrid molecules of Quinone-benzocaine as Plastoquinone analogues in breast cancer cells. ACS Omega, 7(34), 30250-30264. https://doi.org/10.1021/acsomega.2c03428

Auteurs

Ayse Tarbin Jannuzzi (AT)

Faculty of Pharmacy, Department of Pharmaceutical Toxicology, İstanbul University, Istanbul, Turkey.

Ayse Mine Yilmaz Goler (AM)

Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul, Turkey.

Deepak Shilkar (D)

Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.

Subodh Mondal (S)

Bioanalysis, Eurofins Advinus BioPharma Services India Pvt Ltd., Bengaluru, Karnataka, India.

Vinay N Basavanakatti (VN)

Adgyl Lifesciences Private Limited, Bengaluru, Karnataka, India.

Hatice Yıldırım (H)

Department of Chemistry, Engineering Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey.

Mahmut Yıldız (M)

Department of Chemistry, Gebze Technical University, Kocaeli, Turkey.

Hülya Çelik Onar (H)

Department of Chemistry, Engineering Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey.

Nilüfer Bayrak (N)

Department of Chemistry, Faculty of Science, Istanbul University, Istanbul, Turkey.

Venkatesan Jayaprakash (V)

Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.

Amaç Fatih TuYuN (AF)

Department of Chemistry, Faculty of Science, Istanbul University, Istanbul, Turkey.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH