Extreme lithium-metal cycling enabled by a mixed ion- and electron-conducting garnet three-dimensional architecture.
Journal
Nature materials
ISSN: 1476-4660
Titre abrégé: Nat Mater
Pays: England
ID NLM: 101155473
Informations de publication
Date de publication:
Sep 2023
Sep 2023
Historique:
received:
30
12
2022
accepted:
06
07
2023
medline:
4
8
2023
pubmed:
4
8
2023
entrez:
3
8
2023
Statut:
ppublish
Résumé
The development of solid-state Li-metal batteries has been limited by the Li-metal plating and stripping rates and the tendency for dendrite shorts to form at commercially relevant current densities. To address this, we developed a single-phase mixed ion- and electron-conducting (MIEC) garnet with comparable Li-ion and electronic conductivities. We demonstrate that in a trilayer architecture with a porous MIEC framework supporting a thin, dense, garnet electrolyte, the critical current density can be increased to a previously unheard of 100 mA cm
Identifiants
pubmed: 37537353
doi: 10.1038/s41563-023-01627-9
pii: 10.1038/s41563-023-01627-9
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1136-1143Subventions
Organisme : United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Laboratory (U.S. Army Research Laboratory)
ID : W911NF-22-2-0021
Organisme : DOE | Office of Energy Efficiency & Renewable Energy | Vehicle Technologies Office (VTO)
ID : DEEE0008858
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).
Lin, D., Liu, Y. & Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017).
Lee, H. G., Kim, S. Y. & Lee, J. S. Dynamic observation of dendrite growth on lithium metal anode during battery charging/discharging cycles. npj Comput. Mater. 8, 1–13 (2022).
Jana, A. & García, R. E. Lithium dendrite growth mechanisms in liquid electrolytes. Nano Energy 41, 552–565 (2017).
Qian, J. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).
Subramanian, K. et al. A brief review of recent advances in garnet structured solid electrolyte based lithium metal batteries. J. Energy Storage 33, 102157 (2021).
Wang, C. et al. Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chem. Rev. 120, 4257–4300 (2020).
Ramakumar, S., Deviannapoorani, C., Dhivya, L., Shankar, L. S. & Murugan, R. Lithium garnets: synthesis, structure, Li
Murugan, R., Thangadurai, V. & Weppner, W. Fast lithium ion conduction in garnet-type Li
Albertus, P., Babinec, S., Litzelman, S. & Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 3, 16–21 (2017).
Huo, H. et al. In-situ formed Li
Fu, K. et al. Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur batteries. Energy Environ. Sci. 10, 1568–1575 (2017).
Lee, S. et al. Design of a lithiophilic and electron-blocking interlayer for dendrite-free lithium-metal solid-state batteries. Sci. Adv. 8, 153 (2022).
Samson, A. J., Hofstetter, K., Bag, S. & Thangadurai, V. A bird’s-eye view of Li-stuffed garnet-type Li
Alexander, G. V., Indu, M. S. & Murugan, R. Review on the critical issues for the realization of all-solid-state lithium metal batteries with garnet electrolyte: interfacial chemistry, dendrite growth, and critical current densities. Ionics 27, 4105–4126 (2021).
Basappa, R. H., Ito, T. & Yamada, H. Contact between garnet-type solid electrolyte and lithium metal anode: influence on charge transfer resistance and short circuit prevention. J. Electrochem. Soc. 164, A666–A671 (2017).
Han, X. et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 16, 572–579 (2016).
Alexander, G. V. et al. Electrodes-electrolyte interfacial engineering for realizing room temperature lithium metal battery based on garnet structured solid fast Li+ conductors. J. Power Sources 396, 764–773 (2018).
Alexander, G. V., Indu, M. S., Kamakshy, S. & Murugan, R. Development of stable and conductive interface between garnet structured solid electrolyte and lithium metal anode for high performance solid-state battery. Electrochim. Acta 332, 135511 (2020).
Feng, W., Dong, X., Li, P., Wang, Y. & Xia, Y. Interfacial modification of Li/Garnet electrolyte by a lithiophilic and breathing interlayer. J. Power Sources 419, 91–98 (2019).
Lou, J. et al. Achieving efficient and stable interface between metallic lithium and garnet-type solid electrolyte through a thin indium tin oxide interlayer. J. Power Sources 448, 227440 (2020).
Luo, W. et al. Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer. Adv. Mater. 29, 1606042 (2017).
Li, Y. et al. Garnet electrolyte with an ultralow interfacial resistance for Li-metal batteries. J. Am. Chem. Soc. 140, 6448–6455 (2018).
Alexander, G. V., Sreejith, O. V., Indu, M. S. & Murugan, R. Interface-compatible and high-cyclability lithiophilic lithium-zinc alloy anodes for garnet-structured solid electrolytes. ACS Appl. Energy Mater. 3, 9010–9017 (2020).
Huang, Y. et al. Graphitic carbon nitride (g-C
Zhang, X. et al. Long cycling life solid-state Li metal batteries with stress self-adapted Li/garnet interface. Nano Lett. 20, 2871–2878 (2020).
Fu, K. K. et al. Toward garnet electrolyte–based Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Sci. Adv. 3, e1601659 (2017).
Cui, J. et al. Melt-quenching of artificial metallic interlayer enables a resistance-free garnet/lithium interface for all-solid-state lithium-metal batteries. Energy Storage Mater. 53, 899–908(2022).
Wang, C. et al. Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes. Nano Lett. 17, 565–571 (2017).
Xu, S. et al. Three-dimensional, solid-state mixed electron–ion conductive framework for lithium metal anode. Nano Lett. 18, 3926–3933 (2018).
Liu, B. et al. 3D lithium metal anodes hosted in asymmetric garnet frameworks toward high energy density batteries. Energy Storage Mater. 14, 376–382 (2018).
Xu, S. et al. All-in-one lithium-sulfur battery enabled by a porous-dense-porous garnet architecture. Energy Storage Mater. 15, 458–464 (2018).
Hitz, G. T. et al. High-rate lithium cycling in a scalable trilayer Li-garnet-electrolyte architecture. Mater. Today 22, 50–57 (2019).
Yang, C. et al. Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework. Proc. Natl Acad. Sci. USA 115, 3770–3775 (2018).
Xie, H. et al. Amorphous-carbon-coated 3D solid electrolyte for an electro-chemomechanically stable lithium metal anode in solid-state batteries. Nano Lett. 21, 6163–6170 (2021).
Xu, S. et al. Three-dimensional, solid-state mixed electron-ion conductive framework for lithium metal anode. Nano Lett. 18, 3926–3933 (2018).
Chen, Y. et al. Li metal deposition and stripping in a solid-state battery via Coble creep. Nature 578, 251–255 (2020).
Gao, J. et al. Rational design of mixed electronic-ionic conducting Ti-doping Li
Cheng, X., Huang, J., Qiang, W. & Huang, B. Synthesis of mixed ionic and electronic conducting garnet with doping of transition elements (Fe, Co, Ni). Ceram. Int. 46, 3731–3737 (2020).
Samson, A. J., Hofstetter, K., Wachsman, E. & Thangadurai, V. Towards mixed ionic and electronic conducting Li-stuffed garnets. J. Electrochem. Soc. 165, A2303–A2311 (2018).
Thangadurai, V. & Weppner, W. Li
Stockham, M. P., Dong, B., Ding, Y., Li, Y. & Slater, P. R. Evaluation of the effect of site substitution of Pr doping in the lithium garnet system Li
Wagner, R. et al. Crystal structure of garnet-related Li-ion conductor Li
Flatscher, F., Philipp, M., Ganschow, S., Wilkening, H. M. R. & Rettenwander, D. The natural critical current density limit for Li
Duan, J. et al. Lithium–graphite paste: an interface compatible anode for solid-state batteries. Adv. Mater. 31, 1807243 (2019).
Raj, V. et al. Direct correlation between void formation and lithium dendrite growth in solid-state electrolytes with interlayers. Nat. Mater. 21, 1050–1056 (2022).