Methionine restriction-induced sulfur deficiency impairs antitumour immunity partially through gut microbiota.


Journal

Nature metabolism
ISSN: 2522-5812
Titre abrégé: Nat Metab
Pays: Germany
ID NLM: 101736592

Informations de publication

Date de publication:
09 2023
Historique:
received: 03 05 2023
accepted: 30 06 2023
medline: 25 9 2023
pubmed: 4 8 2023
entrez: 3 8 2023
Statut: ppublish

Résumé

Restriction of methionine (MR), a sulfur-containing essential amino acid, has been reported to repress cancer growth and improve therapeutic responses in several preclinical settings. However, how MR impacts cancer progression in the context of the intact immune system is unknown. Here we report that while inhibiting cancer growth in immunocompromised mice, MR reduces T cell abundance, exacerbates tumour growth and impairs tumour response to immunotherapy in immunocompetent male and female mice. Mechanistically, MR reduces microbial production of hydrogen sulfide, which is critical for immune cell survival/activation. Dietary supplementation of a hydrogen sulfide donor or a precursor, or methionine, stimulates antitumour immunity and suppresses tumour progression. Our findings reveal an unexpected negative interaction between MR, sulfur deficiency and antitumour immunity and further uncover a vital role of gut microbiota in mediating this interaction. Our study suggests that any possible anticancer benefits of MR require careful consideration of both the microbiota and the immune system.

Identifiants

pubmed: 37537369
doi: 10.1038/s42255-023-00854-3
pii: 10.1038/s42255-023-00854-3
pmc: PMC10513933
mid: NIHMS1925260
doi:

Substances chimiques

Methionine AE28F7PNPL
Hydrogen Sulfide YY9FVM7NSN
Racemethionine 73JWT2K6T3
Sulfur 70FD1KFU70

Types de publication

Journal Article Research Support, N.I.H., Intramural Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

1526-1543

Subventions

Organisme : NIGMS NIH HHS
ID : FI2 GM143339
Pays : United States
Organisme : NIEHS NIH HHS
ID : P30 ES010126
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI160774
Pays : United States
Organisme : Intramural NIH HHS
ID : ZIA ES102205
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35 GM143024
Pays : United States
Organisme : NIA NIH HHS
ID : R56 AG071256
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI123193
Pays : United States
Organisme : NIEHS NIH HHS
ID : P42 ES031007
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG076019
Pays : United States

Informations de copyright

© 2023. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.

Références

Mato, J. M., Martinez-Chantar, M. L. & Lu, S. C. Methionine metabolism and liver disease. Annu. Rev. Nutr. 28, 273–293 (2008).
pubmed: 18331185 doi: 10.1146/annurev.nutr.28.061807.155438
Wang, Z. et al. Methionine is a metabolic dependency of tumor-initiating cells. Nat. Med. 25, 825–837 (2019).
pubmed: 31061538 doi: 10.1038/s41591-019-0423-5
Xu, Q. et al. HNF4α regulates sulfur amino acid metabolism and confers sensitivity to methionine restriction in liver cancer. Nat. Commun. 11, 3978 (2020).
pubmed: 32770044 pmcid: 7414133 doi: 10.1038/s41467-020-17818-w
Orentreich, N., Matias, J. R., DeFelice, A. & Zimmerman, J. A. Low methionine ingestion by rats extends life span. J. Nutr. 123, 269–274 (1993).
pubmed: 8429371
Miller, R. A. et al. Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell 4, 119–125 (2005).
pubmed: 15924568 doi: 10.1111/j.1474-9726.2005.00152.x
Guo, H. et al. Therapeutic tumor-specific cell cycle block induced by methionine starvation in vivo. Cancer Res. 53, 5676–5679 (1993).
pubmed: 8242623
Poirson-Bichat, F., Gonfalone, G., Bras-Goncalves, R. A., Dutrillaux, B. & Poupon, M. F. Growth of methionine-dependent human prostate cancer (PC-3) is inhibited by ethionine combined with methionine starvation. Br. J. Cancer 75, 1605–1612 (1997).
pubmed: 9184175 pmcid: 2223532 doi: 10.1038/bjc.1997.274
Sinha, R. et al. Dietary methionine restriction inhibits prostatic intraepithelial neoplasia in TRAMP mice. Prostate 74, 1663–1673 (2014).
pubmed: 25250521 doi: 10.1002/pros.22884
Hens, J. R. et al. Methionine-restricted diet inhibits growth of MCF10AT1-derived mammary tumors by increasing cell cycle inhibitors in athymic nude mice. BMC Cancer 16, 349 (2016).
pubmed: 27255182 pmcid: 4891836 doi: 10.1186/s12885-016-2367-1
Gao, X. et al. Dietary methionine influences therapy in mouse cancer models and alters human metabolism. Nature 572, 397–401 (2019).
pubmed: 31367041 pmcid: 6951023 doi: 10.1038/s41586-019-1437-3
Sinclair, L. V. et al. Antigen receptor control of methionine metabolism in T cells. eLife 8, e44210 (2019).
pubmed: 30916644 pmcid: 6497464 doi: 10.7554/eLife.44210
Roy, D. G. et al. Methionine metabolism shapes T helper cell responses through regulation of epigenetic reprogramming. Cell Metab. 31, 250–266 (2020).
pubmed: 32023446 doi: 10.1016/j.cmet.2020.01.006
Bian, Y. et al. Cancer SLC43A2 alters T cell methionine metabolism and histone methylation. Nature 585, 277–282 (2020).
pubmed: 32879489 pmcid: 7486248 doi: 10.1038/s41586-020-2682-1
Moser, A. R., Pitot, H. C. & Dove, W. F. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247, 322–324 (1990).
pubmed: 2296722 doi: 10.1126/science.2296722
Su, L. K. et al. Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science 256, 668–670 (1992).
pubmed: 1350108 doi: 10.1126/science.1350108
Castro, F., Cardoso, A. P., Goncalves, R. M., Serre, K. & Oliveira, M. J. Interferon-gamma at the crossroads of tumor immune surveillance or evasion. Front. Immunol. 9, 847 (2018).
pubmed: 29780381 pmcid: 5945880 doi: 10.3389/fimmu.2018.00847
Shultz, L. D. et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J. Immunol. 174, 6477–6489 (2005).
pubmed: 15879151 doi: 10.4049/jimmunol.174.10.6477
Wang, M. et al. Active immunotherapy of cancer with a nonreplicating recombinant fowlpox virus encoding a model tumor-associated antigen. J. Immunol. 154, 4685–4692 (1995).
pubmed: 7722321 doi: 10.4049/jimmunol.154.9.4685
Belkaid, Y. & Hand, T. W. Role of the microbiota in immunity and inflammation. Cell 157, 121–141 (2014).
pubmed: 24679531 pmcid: 4056765 doi: 10.1016/j.cell.2014.03.011
Skelly, A. N., Sato, Y., Kearney, S. & Honda, K. Mining the microbiota for microbial and metabolite-based immunotherapies. Nat. Rev. Immunol. 19, 305–323 (2019).
pubmed: 30858494 doi: 10.1038/s41577-019-0144-5
Saus, E., Iraola-Guzman, S., Willis, J. R., Brunet-Vega, A. & Gabaldon, T. Microbiome and colorectal cancer: roles in carcinogenesis and clinical potential. Mol. Asp. Med. 69, 93–106 (2019).
doi: 10.1016/j.mam.2019.05.001
Longhi, G., van Sinderen, D., Ventura, M. & Turroni, F. Microbiota and cancer: the emerging beneficial role of Bifidobacteria in cancer immunotherapy. Front. Microbiol. 11, 575072 (2020).
pubmed: 33013813 pmcid: 7507897 doi: 10.3389/fmicb.2020.575072
Zhong, L., Zhang, X. & Covasa, M. Emerging roles of lactic acid bacteria in protection against colorectal cancer. World J. Gastroenterol. 20, 7878–7886 (2014).
pubmed: 24976724 pmcid: 4069315 doi: 10.3748/wjg.v20.i24.7878
Zagato, E. et al. Endogenous murine microbiota member Faecalibaculum rodentium and its human homologue protect from intestinal tumour growth. Nat. Microbiol. 5, 511–524 (2020).
pubmed: 31988379 pmcid: 7048616 doi: 10.1038/s41564-019-0649-5
Derrien, M., Collado, M. C., Ben-Amor, K., Salminen, S. & de Vos, W. M. The mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract. Appl. Environ. Microbiol. 74, 1646–1648 (2008).
pubmed: 18083887 doi: 10.1128/AEM.01226-07
Cani, P. D. & de Vos, W. M. Next-generation beneficial microbes: the case of Akkermansia muciniphila. Front. Microbiol. 8, 1765 (2017).
pubmed: 29018410 pmcid: 5614963 doi: 10.3389/fmicb.2017.01765
Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).
pubmed: 29097494 doi: 10.1126/science.aan3706
Pelaseyed, T. et al. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol. Rev. 260, 8–20 (2014).
pubmed: 24942678 pmcid: 4281373 doi: 10.1111/imr.12182
Seko, A., Nagata, K., Yonezawa, S. & Yamashita, K. Down-regulation of Gal 3-O-sulfotransferase-2 (Gal3ST-2) expression in human colonic non-mucinous adenocarcinoma. Jpn J. Cancer Res. 93, 507–515 (2002).
pubmed: 12036446 pmcid: 5927024 doi: 10.1111/j.1349-7006.2002.tb01285.x
Perridon, B. W., Leuvenink, H. G., Hillebrands, J. L., van Goor, H. & Bos, E. M. The role of hydrogen sulfide in aging and age-related pathologies. Aging 8, 2264–2289 (2016).
pubmed: 27683311 pmcid: 5115888 doi: 10.18632/aging.101026
Miller, T. W. et al. Hydrogen sulfide is an endogenous potentiator of T cell activation. J. Biol. Chem. 287, 4211–4221 (2012).
pubmed: 22167178 doi: 10.1074/jbc.M111.307819
Carbonero, F., Benefiel, A. C., Alizadeh-Ghamsari, A. H. & Gaskins, H. R. Microbial pathways in colonic sulfur metabolism and links with health and disease. Front. Physiol. 3, 448 (2012).
pubmed: 23226130 pmcid: 3508456 doi: 10.3389/fphys.2012.00448
Lu, S., Gao, Y., Huang, X. & Wang, X. GYY4137, a hydrogen sulfide (H
pubmed: 24535538 doi: 10.3892/ijo.2014.2305
Mustafa, A. K. et al. H
pubmed: 19903941 pmcid: 2998899 doi: 10.1126/scisignal.2000464
Wolf, P. G. et al. Diversity and distribution of sulfur metabolic genes in the human gut microbiome and their association with colorectal cancer. Microbiome 10, 64 (2022).
pubmed: 35440042 pmcid: 9016944 doi: 10.1186/s40168-022-01242-x
Shimada, T., Tanaka, K. & Ishihama, A. Transcription factor DecR (YbaO) controls detoxification of L-cysteine in Escherichia coli. Microbiology 162, 1698–1707 (2016).
pubmed: 27435271 doi: 10.1099/mic.0.000337
Lobel, L., Cao, Y. G., Fenn, K., Glickman, J. N. & Garrett, W. S. Diet posttranslationally modifies the mouse gut microbial proteome to modulate renal function. Science 369, 1518–1524 (2020).
pubmed: 32943527 pmcid: 8178816 doi: 10.1126/science.abb3763
Ze, X., Le Mougen, F., Duncan, S. H., Louis, P. & Flint, H. J. Some are more equal than others: the role of “keystone” species in the degradation of recalcitrant substrates. Gut Microbes 4, 236–240 (2013).
pubmed: 23549436 pmcid: 3669169 doi: 10.4161/gmic.23998
Chia, L. W. et al. Deciphering the trophic interaction between Akkermansia muciniphila and the butyrogenic gut commensal Anaerostipes caccae using a metatranscriptomic approach. Antonie Van Leeuwenhoek 111, 859–873 (2018).
pubmed: 29460206 pmcid: 5945754 doi: 10.1007/s10482-018-1040-x
Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).
pubmed: 10592173 pmcid: 102409 doi: 10.1093/nar/28.1.27
Mentch, S. J. et al. Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism. Cell Metab. 22, 861–873 (2015).
pubmed: 26411344 pmcid: 4635069 doi: 10.1016/j.cmet.2015.08.024
Duranton, B. et al. Promotion of intestinal carcinogenesis by dietary methionine. Carcinogenesis 20, 493–497 (1999).
pubmed: 10190567 doi: 10.1093/carcin/20.3.493
Komninou, D., Leutzinger, Y., Reddy, B. S. & Richie, J. P. Jr. Methionine restriction inhibits colon carcinogenesis. Nutr. Cancer 54, 202–208 (2006).
pubmed: 16898864 doi: 10.1207/s15327914nc5402_6
Nutrient Recommendations: Dietary Reference Intakes (DRI) (NIH, accessed 15 November 2021); https://ods.od.nih.gov/HealthInformation/Dietary_Reference_Intakes.aspx
Wu, G. Dietary protein intake and human health. Food Funct. 7, 1251–1265 (2016).
pubmed: 26797090 doi: 10.1039/C5FO01530H
Phillips, S. M., Chevalier, S. & Leidy, H. J. Protein “requirements” beyond the RDA: implications for optimizing health. Appl. Physiol. Nutr. Metab. 41, 565–572 (2016).
pubmed: 26960445 doi: 10.1139/apnm-2015-0550
Hine, C. & Mitchell, J. R. Endpoint or kinetic measurement of hydrogen sulfide production capacity in tissue extracts. Bio. Protoc. 7, e2382 (2017).
pubmed: 29071285 pmcid: 5653314 doi: 10.21769/BioProtoc.2382
Paul, B. D. & Snyder, S. H. Protein sulfhydration. Methods Enzymol. 555, 79–90 (2015).
pubmed: 25747476 doi: 10.1016/bs.mie.2014.11.021
de Winter, J. C. F. Using the Student’s t-test with extremely small sample sizes. Pract. Assess. Res. Eval. 18, 10 (2013).

Auteurs

Ming Ji (M)

Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.

Xiaojiang Xu (X)

Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.

Qing Xu (Q)

Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.

Yun-Chung Hsiao (YC)

Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Cody Martin (C)

Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA.

Svetlana Ukraintseva (S)

Social Science Research Institute, Duke University School of Medicine, Durham, NC, USA.

Vladimir Popov (V)

Social Science Research Institute, Duke University School of Medicine, Durham, NC, USA.

Konstantin G Arbeev (KG)

Social Science Research Institute, Duke University School of Medicine, Durham, NC, USA.

Tom A Randall (TA)

Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.

Xiaoyue Wu (X)

Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.

Liz M Garcia-Peterson (LM)

Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.

Juan Liu (J)

Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.

Xin Xu (X)

Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.

M Andrea Azcarate-Peril (M)

Department of Medicine, Division of Gastroenterology and Hepatology and Microbiome Core Facility, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Yisong Wan (Y)

Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Anatoliy I Yashin (AI)

Social Science Research Institute, Duke University School of Medicine, Durham, NC, USA.

Karthik Anantharaman (K)

Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.

Kun Lu (K)

Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Jian-Liang Li (JL)

Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.

Igor Shats (I)

Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.

Xiaoling Li (X)

Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA. lix3@niehs.nih.gov.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH