Phenotyping the obesities: reality or utopia?
Clustering
Comorbidities
Heterogeneity
Obesity
Patient stratification
Phenotypes
Journal
Reviews in endocrine & metabolic disorders
ISSN: 1573-2606
Titre abrégé: Rev Endocr Metab Disord
Pays: Germany
ID NLM: 100940588
Informations de publication
Date de publication:
10 2023
10 2023
Historique:
accepted:
27
07
2023
medline:
11
9
2023
pubmed:
4
8
2023
entrez:
3
8
2023
Statut:
ppublish
Résumé
In this thematic issue on phenotyping the obesities, prominent international experts offer an insightful and comprehensive collection of articles covering the current knowledge in the field. In order to actually capture all the polyhedral determinants of the diverse types of obesity, the granularity of the phenotypic information acquired must be expanded in the context of a personalized approach. Whilst the use of precision medicine has been successfully implemented in areas like cancer and other diseases, health care providers are more reluctant to embrace detailed phenotyping to guide diagnosis, treatment and prevention in obesity. Given its multiple complex layers, phenotyping necessarily needs to go beyond the multi-omics approach and incorporate all the diverse spheres that conform the reality of people living with obesity. Potential barriers, difficulties, roadblocks and opportunities together with their interaction in a syndemic context are analyzed. Plausible lacunae are also highlighted in addition to pointing to the need of redefining new conceptual frameworks. Therefore, this extraordinary collection of state-ofthe-art reviews provides useful information to both experienced clinicians and trainees as well as academics to steer clinical practice and research in the management of people living with obesity irrespective of practice setting or career stage.
Identifiants
pubmed: 37537402
doi: 10.1007/s11154-023-09829-x
pii: 10.1007/s11154-023-09829-x
pmc: PMC10492876
doi:
Types de publication
Journal Article
Review
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
767-773Informations de copyright
© 2023. The Author(s).
Références
Frühbeck G, Gómez-Ambrosi J. Control of body weight: a physiologic and transgenic perspective. Diabetologia. 2003;46(2):143–72.
doi: 10.1007/s00125-003-1053-4
pubmed: 12627314
Perdomo CM, Cohen RV, Sumithran P, Clément K, Frühbeck G. Contemporary medical, device, and surgical therapies for obesity in adults. Lancet. 2023;401(10382):1116–30.
doi: 10.1016/S0140-6736(22)02403-5
pubmed: 36774932
Catalán V, Avilés-Olmos I, Rodríguez A, Becerril S, Fernández-Formoso JA, Kiortsis D, et al. Time to consider the “exposome hypothesis” in the development of the obesity pandemic. Nutrients. 2022;14:1597.
doi: 10.3390/nu14081597
pubmed: 35458158
pmcid: 9032727
World Health Organization. Fact sheet: obesity and overweight. Available at: http://www.who.int/mediacentre/factsheets/fs311/en/ . Updated 9 June 2021.
Yárnoz-Esquiroz P, Olazarán L, Aguas-Ayesa M, Perdomo CM, García-Goñi M, Silva C, et al. 'Obesities': position statement on a complex disease entity with multifaceted drivers. Eur J Clin Invest. 2022;e13811.
Trang K, Grant SFA. Genetics and epigenetics in the obesity phenotyping scenario. Rev Endocr Metab Disord. 2023. https://doi.org/10.1007/s11154-023-09804-6 . (Epub ahead of print Apr 10:1–19):PMID: 37032403.
Frühbeck G, Busetto L, Dicker D, Yumuk V, Goossens GH, Hebebrand J, et al. The ABCD of obesity: An EASO Position Statement on a diagnostic term with clinical and scientific implications. Obes Facts. 2019;12(2):131–6.
doi: 10.1159/000497124
pubmed: 30844811
pmcid: 6547280
Sattar N, McMurray JJV, McInnes IB, Aroda VR, Lean MEJ. Treating chronic diseases without tackling excess adiposity promotes multimorbidity. Lancet Diabetes Endocrinol. 2023;11(1):58–62.
doi: 10.1016/S2213-8587(22)00317-5
pubmed: 36460014
Perdomo CM, Avilés-Olmos I, Dicker D, Frühbeck G. Towards an adiposity-related disease framework for the diagnosis and management of obesities. Rev Endocr Metab Disord. 2023. https://doi.org/10.1007/s11154-023-09797-2 . (Epub ahead of print May 10):PMID: 37162651.
Frühbeck G, Gómez AJ. Rationale for the existence of additional adipostatic hormones. FASEB J. 2001;15(11):1996–2006.
doi: 10.1096/fj.00-0829hyp
pubmed: 11532980
Frühbeck G, Gómez Ambrosi J, Salvador J. Leptin-induced lipolysis opposes the tonic inhibition of endogenous adenosine in white adipocytes. FASEB J. 2001;15(2):333–40.
doi: 10.1096/fj.00-0249com
pubmed: 11156949
Frühbeck G, Gómez-Ambrosi J. Modulation of the leptin-induced white adipose tissue lipolysis by nitric oxide. Cell Signal. 2001;13(11):827–33.
doi: 10.1016/S0898-6568(01)00211-X
pubmed: 11583918
Muruzábal FJ, Frühbeck G, Gómez-Ambrosi J, Archanco M, Burrell MA. Immunocytochemical detection of leptin in non-mammalian vertebrate stomach. Gen Comp Endocrinol. 2002;128(2):149–52.
doi: 10.1016/S0016-6480(02)00072-2
pubmed: 12392688
Frühbeck G. Obesity: Aquaporin enters the picture. Nature. 2005;438(7067):436–7.
doi: 10.1038/438436b
pubmed: 16306977
Sabater M, Moreno-Navarrete JM, Ortega FJ, Pardo G, Salvador J, Ricart W, et al. Circulating pigment epithelium-derived factor levels are associated with insulin resistance and decrease after weight loss. J Clin Endocrinol Metab. 2010;95(10):4720–8.
doi: 10.1210/jc.2010-0630
pubmed: 20631025
Catalán V, Gómez-Ambrosi J, Rodríguez A, Ramírez B, Rotellar F, Valentí V, et al. Increased levels of calprotectin in obesity are related to macrophage content: impact on inflammation and effect of weight loss. Mol Med. 2011;17(11–12):1157–67.
doi: 10.2119/molmed.2011.00144
pubmed: 21738950
pmcid: 3321803
Pulido MR, Diaz-Ruiz A, Jimenez-Gomez Y, Garcia-Navarro S, Gracia-Navarro F, Tinahones F, et al. Rab18 dynamics in adipocytes in relation to lipogenesis, lipolysis and obesity. PLoS ONE. 2011;6(7): e22931.
doi: 10.1371/journal.pone.0022931
pubmed: 21829560
pmcid: 3145781
Rodríguez A, Gómez-Ambrosi J, Catalán V, Rotellar F, Valentí V, Silva C, et al. The ghrelin O-acyltransferase-ghrelin system reduces TNF-a-induced apoptosis and autophagy in human visceral adipocytes. Diabetologia. 2012;55(11):3038–50.
doi: 10.1007/s00125-012-2671-5
pubmed: 22869322
Moreno-Navarrete JM, Escote X, Ortega F, Serino M, Campbell M, Michalski MC, et al. A role for adipocyte-derived lipopolysaccharide-binding protein in inflammation- and obesity-associated adipose tissue dysfunction. Diabetologia. 2013;56(11):2524–37.
doi: 10.1007/s00125-013-3015-9
pubmed: 23963324
Catalán V, Gómez-Ambrosi J, Rodrïguez A, Pérez-Hernández AI, Gurbindo J, Ramírez B, et al. Activation of noncanonical Wnt signaling through WNT5A in visceral adipose tissue of obese subjects is related to inflammation. J Clin Endocrinol Metab. 2014;99(8):E1407–17.
doi: 10.1210/jc.2014-1191
pubmed: 24840810
Salmón-Gómez L, Catalán V, Frühbeck G, Gómez-Ambrosi J. Relevance of body composition in phenotyping the obesities. Rev Endocr Metab Disord. 2023. https://doi.org/10.1007/s11154-023-09796-3 . (Epub ahead of print Mar 17):PMID: 36928809.
Rinella ME, Lazarus JV, Ratziu V, Francque SM, Sanyal AJ, Kanwal F, et al. NAFLD Nomenclature consensus group. A multi-society Delphi consensus statement on new fatty liver disease nomenclature. Ann Hepatol. 2023;Jun 20(101133). https://doi.org/10.1016/j.aohep.2023.101133 . Epub ahead of print.
Portincasa P. NAFLD, MAFLD, and beyond: one or several acronyms for better comprehension and patient care. Intern Emerg Med. 2023;18(4):993–1006.
doi: 10.1007/s11739-023-03203-0
pubmed: 36807050
pmcid: 10326150
Francque SMA. Towards precision medicine in non-alcoholic fatty liver disease. Rev Endocr Metab Disord. 2023;online.
Perdomo CM, Frühbeck G, Escalada J. Impact of nutritional changes on nonalcoholic fatty liver disease. Nutrients. 2019;11(3):677.
Preda A, Carbone F, Tirandi A, Montecucco F, Liberale L. Obesity phenotypes and cardiovascular risk: from pathophysiology to clinical management. Rev Endocr Metab Disord. 2023. https://doi.org/10.1007/s11154-023-09813-5 . (Epub ahead of print):PMID: 37358728.
Blaak EE, Goossens GH. Metabolic phenotyping in people living with obesity: implications for dietary prevention. Rev Endocr Metab Disord. 2023;online.
Di Ciaula A, Bonfrate L, Khalil M, Garruti G, Portincasa P. Contribution of the microbiome for better phenotyping of people living with obesity. Rev Endocr Metab Disord. 2023. https://doi.org/10.1007/s11154-023-09798-1 . (Epub ahead of print Apr 29:1–32):PMID: 37119391.
Camacho-Barcia L, Lucas I, Miranda-Olivos R, Jiménez-Murcia S, Fernández-Aranda F. Applying psycho-behavioural phenotyping in obesity characterization. Rev Endocr Metab Disord. 2023. https://doi.org/10.1007/s11154-023-09810-8 . (Epub ahead of print):PMID: 37261609.
Shannon CE, Ní Chathail MB, Mullin SM, Meehan A, McGillicuddy FC, Roche HM. Precision nutrition for targeting pathophysiology of cardiometabolic phenotypes. Rev Endocr Metab Disord. 2023. https://doi.org/10.1007/s11154-023-09821-5 . (Epub ahead of print):PMID: 37402955.
Oppert JM, Ciangura C, Bellicha A. Physical activity and exercise for weight loss and maintenance in people living with obesity. Rev Endocr Metab Disord. 2023. https://doi.org/10.1007/s11154-023-09805-5 . (Epub ahead of print May 5):PMID: 37142892.
Cifuentes L, Ghusn W, Feris F, Campos A, Sacoto D, De la Rosa A, et al. Phenotype tailored lifestyle intervention on weight loss and cardiometabolic risk factors in adults with obesity: a single-centre, non-randomised, proof-of-concept study. EClinicalMedicine. 2023;58: 101923.
doi: 10.1016/j.eclinm.2023.101923
pubmed: 37007741
pmcid: 10050763
Hocking S, Sumithran P. Individualised prescription of medications for treatment of obesity in adults. Rev Endocr Metab Disord. 2023. https://doi.org/10.1007/s11154-023-09808-2 . (Epub ahead of print):PMID: 37202547.
Fagherazzi G, Zhang L, Aguayo G, Pastore J, Goetzinger C, Fischer A, et al. Towards precision cardiometabolic prevention: results from a machine learning, semi-supervised clustering approach in the nationwide population-based ORISCAV-LUX 2 study. Sci Rep. 2021;11(1):16056.
doi: 10.1038/s41598-021-95487-5
pubmed: 34362963
pmcid: 8346462
Acosta A, Camilleri M, Shin A, Vazquez-Roque MI, Iturrino J, Burton D, et al. Quantitative gastrointestinal and psychological traits associated with obesity and response to weight-loss therapy. Gastroenterology. 2015;148(3):537–46.
doi: 10.1053/j.gastro.2014.11.020
pubmed: 25486131
Lin Z, Feng W, Liu Y, Ma C, Arefan D, Zhou D, et al. Machine learning to identify metabolic subtypes of obesity: a multi-center study. Front Endocrinol. 2021;12: 713592.
doi: 10.3389/fendo.2021.713592
Pereira SS, Guimarães M, Monteiro MP. Towards precision medicine in bariatric surgery prescription. Rev Endocr Metab Disord. 2023. https://doi.org/10.1007/s11154-023-09801-9 . (Epub ahead of print May 2):PMID: 37129798.
Aguas-Ayesa M, Yárnoz-Esquíroz P, Olazarán L, Gómez-Ambrosi J, Frühbeck G. Precision nutrition in the context of bariatric surgery. Rev Endocr Metab Disord. 2023. https://doi.org/10.1007/s11154-023-09794-5 . (Epub ahead of print Mar 17:1–13):PMID: 36928810.
Cohen RV, Petry TB. How to address weight regain after bariatric surgery in an individualized way. Rev Endocr Metab Disord. 2023. https://doi.org/10.1007/s11154-023-09806-4 . (Epub ahead of print May 12):PMID: 37171756.
Baker JL, Bjerregaard LG. Advancing precision public health for obesity in children. Rev Endocr Metab Disord. 2023. https://doi.org/10.1007/s11154-023-09802-8 . (Epub ahead of print Apr 14:1–8):PMID: 37055611.
Faienza MF, Wang DQ, Frühbeck G, Garruti G, Portincasa P. The dangerous link between childhood and adulthood predictors of obesity and metabolic syndrome. Intern Emerg Med. 2016;11(2):175–82.
doi: 10.1007/s11739-015-1382-6
pubmed: 26758061
Faienza MF, Chiarito M, Molina-Molina E, Shanmugam H, Lammert F, Krawczyk M, et al. Childhood obesity, cardiovascular and liver health: a growing epidemic with age. World J Pedriatr. 2020;16(5):438–45.
doi: 10.1007/s12519-020-00341-9
pubmed: 32020441
Frühbeck G, Kiortsis DN, Catalán V. Precision medicine: diagnosis and management of obesity. Lancet Diabetes Endocrinol. 2018;6(3):164–6.
doi: 10.1016/S2213-8587(17)30312-1
pubmed: 28919063
Haug CJ, Drazen JM. Artificial intelligence and machine learning in clinical medicine, 2023. N Engl J Med. 2023;388(13):1201–8.
doi: 10.1056/NEJMra2302038
pubmed: 36988595