Near-infrared co-illumination of fluorescent proteins reduces photobleaching and phototoxicity.


Journal

Nature biotechnology
ISSN: 1546-1696
Titre abrégé: Nat Biotechnol
Pays: United States
ID NLM: 9604648

Informations de publication

Date de publication:
03 Aug 2023
Historique:
received: 31 01 2022
accepted: 30 06 2023
medline: 4 8 2023
pubmed: 4 8 2023
entrez: 3 8 2023
Statut: aheadofprint

Résumé

Here we present a method to reduce the photobleaching of fluorescent proteins and the associated phototoxicity. It exploits a photophysical process known as reverse intersystem crossing, which we induce by near-infrared co-illumination during fluorophore excitation. This dual illumination method reduces photobleaching effects 1.5-9.2-fold, can be easily implemented on commercial microscopes and is effective in eukaryotic and prokaryotic cells with a wide range of fluorescent proteins.

Identifiants

pubmed: 37537501
doi: 10.1038/s41587-023-01893-7
pii: 10.1038/s41587-023-01893-7
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-19-CE29-0003
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-19-CE35-0003
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-19-CE11-0005

Informations de copyright

© 2023. The Author(s).

Références

Stennett, E. M., Ciuba, M. A. & Levitus, M. Photophysical processes in single molecule organic fluorescent probes. Chem. Soc. Rev. 43, 1057–1075 (2014).
doi: 10.1039/C3CS60211G pubmed: 24141280
Acharya, A. et al. Photoinduced chemistry in fluorescent proteins: curse or blessing? Chem. Rev. 117, 758–795 (2017).
doi: 10.1021/acs.chemrev.6b00238 pubmed: 27754659
Duan, C. et al. Structural evidence for a two-regime photobleaching mechanism in a reversibly switchable fluorescent protein. J. Am. Chem. Soc. 135, 15841–15850 (2013).
doi: 10.1021/ja406860e pubmed: 24059326
Laissue, P. P., Alghamdi, R. A., Tomancak, P., Reynaud, E. G. & Shroff, H. Assessing phototoxicity in live fluorescence imaging. Nat. Methods 14, 657–661 (2017).
doi: 10.1038/nmeth.4344 pubmed: 28661494
Rasnik, I., McKinney, S. A. & Ha, T. Nonblinking and longlasting single-molecule fluorescence imaging. Nat. Methods 3, 891–893 (2006).
doi: 10.1038/nmeth934 pubmed: 17013382
Vogelsang, J. et al. A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes. Angew. Chem. Int. Ed. 47, 5465–5469 (2008).
doi: 10.1002/anie.200801518
Cordes, T., Maiser, A., Steinhauer, C., Schermelleh, L. & Tinnefeld, P. Mechanisms and advancement of antifading agents for fluorescence microscopy and single-molecule spectroscopy. Phys. Chem. Chem. Phys. 13, 6699–6709 (2011).
doi: 10.1039/c0cp01919d pubmed: 21311807
Bogdanov, A. M., Bogdanova, E. A., Chudakov, D. M., Gorodnicheva, T. V., Lukyanov, S. & Lukyanov, K. A. Cell culture medium affects GFP photostability: a solution. Nat. Methods 6, 859–860 (2009).
doi: 10.1038/nmeth1209-859 pubmed: 19935837
Bogdanov, A. M., Kudryavtseva, E. I. & Lukyanov, K. A. Anti-fading media for live cell GFP imaging. PLoS ONE 7, e53004 (2012).
doi: 10.1371/journal.pone.0053004 pubmed: 23285248 pmcid: 3528736
Hoebe, R. A., Van Oven, C. H., Gadella, T. W. J., Dhonukshe, P. B., Van Noorden, C. J. F. & Manders, E. M. M. Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging. Nat. Biotechnol. 25, 249–253 (2007).
doi: 10.1038/nbt1278 pubmed: 17237770
Donnert, G., Eggeling, C. & Hell, S. W. Major signal increase in fluorescence microscopy through dark-state relaxation. Nat. Methods 4, 81–86 (2007).
doi: 10.1038/nmeth986 pubmed: 17179937
Reindl, S. & Penzkofer, A. Higher excited-state triplet-singlet intersystem crossing of some organic dyes. Chem. Phys. 211, 431–439 (1996).
doi: 10.1016/0301-0104(96)00191-7
Redmond, R. W., Kochevar, I. E., Krieg, M., Smith, G. & McGimpsey, W. G. Excited-state relaxation in cyanine dyes: a remarkably efficient reverse intersystem crossing from upper triplet levels. J. Phys. Chem. A 101, 2773–2777 (1997).
doi: 10.1021/jp963001f
Ringemann, C., Schönle, A., Giske, A., von Middendorff, C., Hell, S. W. & Eggeling, C. Enhancing fluorescence brightness: effect of reverse intersystem crossing studied by fluorescence fluctuation spectroscopy. Chemphyschem 9, 612–624 (2008).
doi: 10.1002/cphc.200700596 pubmed: 18324718
Byrdin, M., Duan, C., Bourgeois, D. & Brettel, K. A long-lived triplet state is the entrance gateway to oxidative photochemistry in green fluorescent proteins. J. Am. Chem. Soc. 140, 2897–2905 (2018).
doi: 10.1021/jacs.7b12755 pubmed: 29394055
Peng, B. et al. Optically modulated and optically activated delayed fluorescent proteins through dark state engineering. J. Phys. Chem. B 125, 5200–5209 (2021).
doi: 10.1021/acs.jpcb.1c00649 pubmed: 33978414 pmcid: 8767457
Barilero, T., Le Saux, T., Gosse, C. & Jullien, L. Fluorescent thermometers for dual-emission-wavelength measurements: molecular engineering and application to thermal imaging in a microsystem. Anal. Chem. 81, 7988–8000 (2009).
doi: 10.1021/ac901027f pubmed: 19711963
Japaridze, A., Gogou, C., Kerssemakers, J. W. J., Nguyen, H. M. & Dekker, C. Direct observation of independently moving replisomes in Escherichia coli. Nat. Commun. 11, 3109 (2020).
doi: 10.1038/s41467-020-16946-7 pubmed: 32561741 pmcid: 7305307
Tiruvadi-Krishnan, S., Mannik, J., Kar, P., Lin, J., Amir, A. & Mannik, J. Coupling between DNA replication, segregation, and the onset of constriction in Escherichia coli. Cell Rep. 38, 110539 (2022).
doi: 10.1016/j.celrep.2022.110539 pubmed: 35320717 pmcid: 9003928
Kiepas, A., Voorand, E., Mubaid, F., Siegel, P. M. & Brown, C. M. Optimizing live-cell fluorescence imaging conditions to minimize phototoxicity. J. Cell Sci. 133, jcs242834 (2020).
doi: 10.1242/jcs.242834 pubmed: 31988150
Plamont, M. A. et al. Small fluorescence-activating and absorption-shifting tag for tunable protein imaging in vivo. Proc. Natl Acad. Sci. USA 113, 497–502 (2016).
doi: 10.1073/pnas.1513094113 pubmed: 26711992
Griesbeck, O., Baird, G. S., Campbell, R. E., Zacharias, D. A. & Tsien, R. Y. Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J. Biol. Chem. 276, 29188–29194 (2001).
doi: 10.1074/jbc.M102815200 pubmed: 11387331
Nguyen, A. W. & Daugherty, P. S. Evolutionary optimization of fluorescent proteins for intracellular FRET. Nat. Biotechnol. 23, 355–360 (2005).
doi: 10.1038/nbt1066 pubmed: 15696158
Balleza, E., Kim, J. M. & Cluzel, P. Systematic characterization of maturation time of fluorescent proteins in living cells. Nat. Methods 15, 47–51 (2018).
doi: 10.1038/nmeth.4509 pubmed: 29320486
Zimmer, M. Green fluorescent protein (GFP): applications, structure, and related photophysical behavior. Chem. Rev. 102, 759–781 (2002).
doi: 10.1021/cr010142r pubmed: 11890756
Tsien, R. Y. The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544 (1998).
doi: 10.1146/annurev.biochem.67.1.509 pubmed: 9759496
Vargas, P., Terriac, E., Lennon-Dumenil, A. M. & Piel, M. Study of cell migration in microfabricated channels. J. Vis. Exp. 21, e51099 (2014).
Sormendi, S. et al. HIF2α is a direct regulator of neutrophil motility. Blood 137, 3416–3427 (2021).
doi: 10.1182/blood.2020007505 pubmed: 33619535
Ollion, J., Elez, M. & Robert, L. High-throughput detection and tracking of cells and intracellular spots in mother machine experiments. Nat. Protoc. 14, 3144–3161 (2019).
doi: 10.1038/s41596-019-0216-9 pubmed: 31554957
Tinevez, J. Y. et al. TrackMate: an open and extensible platform for single-particle tracking. Methods 115, 80–90 (2017).
doi: 10.1016/j.ymeth.2016.09.016 pubmed: 27713081
Jaqaman, K. et al. Robust single-particle tracking in live-cell time-lapse sequences. Nat. Methods 5, 695–702 (2008).
doi: 10.1038/nmeth.1237 pubmed: 18641657 pmcid: 2747604
Reyes-Lamothe, R., Sherratt, D. J. & Leake, M. C. Stoichiometry and architecture of active DNA replication machinery in Escherichia coli. Science 328, 498–501 (2010).
doi: 10.1126/science.1185757 pubmed: 20413500 pmcid: 2859602
Wang, P. et al. Robust growth of Escherichia coli. Curr. Biol. 20, 1099–1103 (2010).
doi: 10.1016/j.cub.2010.04.045 pubmed: 20537537 pmcid: 2902570
Robert, L., Ollion, J. & Elez, M. Real-time visualization of mutations and their fitness effects in single bacteria. Nat. Protoc. 14, 3126–3143 (2019).
doi: 10.1038/s41596-019-0215-x pubmed: 31554956
Zaritsky, A., Wang, P. & Vischer, N. O. E. Instructive simulation of the bacterial cell division cycle. Microbiology (Reading) 157, 1876–1885 (2011).
doi: 10.1099/mic.0.049403-0 pubmed: 21565934
Robert, L., Ollion, J., Robert, J., Song, X., Matic, I. & Elez, M. Mutation dynamics and fitness effects followed in single cells. Science 359, 1283–1286 (2018).
doi: 10.1126/science.aan0797 pubmed: 29590079

Auteurs

Lucie Ludvikova (L)

PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, Paris, France.

Emma Simon (E)

PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, Paris, France.

Mathieu Deygas (M)

Institut Curie, Paris Sciences et Lettres (PSL) Research University, Centre National de la Recherche Scientifique (CNRS), Paris, France.
Institut Pierre-Gilles de Gennes, PSL Research University, Paris, France.

Thomas Panier (T)

Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris, France.

Marie-Aude Plamont (MA)

PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, Paris, France.

Alison Tebo (A)

PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, Paris, France.

Matthieu Piel (M)

Institut Curie, Paris Sciences et Lettres (PSL) Research University, Centre National de la Recherche Scientifique (CNRS), Paris, France.
Institut Pierre-Gilles de Gennes, PSL Research University, Paris, France.

Ludovic Jullien (L)

PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, Paris, France.

Lydia Robert (L)

Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris, France. lydia.robert@inrae.fr.
Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France. lydia.robert@inrae.fr.

Thomas Le Saux (T)

PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, Paris, France. thomas.lesaux@ens.psl.eu.

Agathe Espagne (A)

PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, Paris, France. agathe.espagne@ens.psl.eu.

Classifications MeSH