Near-infrared co-illumination of fluorescent proteins reduces photobleaching and phototoxicity.
Journal
Nature biotechnology
ISSN: 1546-1696
Titre abrégé: Nat Biotechnol
Pays: United States
ID NLM: 9604648
Informations de publication
Date de publication:
03 Aug 2023
03 Aug 2023
Historique:
received:
31
01
2022
accepted:
30
06
2023
medline:
4
8
2023
pubmed:
4
8
2023
entrez:
3
8
2023
Statut:
aheadofprint
Résumé
Here we present a method to reduce the photobleaching of fluorescent proteins and the associated phototoxicity. It exploits a photophysical process known as reverse intersystem crossing, which we induce by near-infrared co-illumination during fluorophore excitation. This dual illumination method reduces photobleaching effects 1.5-9.2-fold, can be easily implemented on commercial microscopes and is effective in eukaryotic and prokaryotic cells with a wide range of fluorescent proteins.
Identifiants
pubmed: 37537501
doi: 10.1038/s41587-023-01893-7
pii: 10.1038/s41587-023-01893-7
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-19-CE29-0003
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-19-CE35-0003
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-19-CE11-0005
Informations de copyright
© 2023. The Author(s).
Références
Stennett, E. M., Ciuba, M. A. & Levitus, M. Photophysical processes in single molecule organic fluorescent probes. Chem. Soc. Rev. 43, 1057–1075 (2014).
doi: 10.1039/C3CS60211G
pubmed: 24141280
Acharya, A. et al. Photoinduced chemistry in fluorescent proteins: curse or blessing? Chem. Rev. 117, 758–795 (2017).
doi: 10.1021/acs.chemrev.6b00238
pubmed: 27754659
Duan, C. et al. Structural evidence for a two-regime photobleaching mechanism in a reversibly switchable fluorescent protein. J. Am. Chem. Soc. 135, 15841–15850 (2013).
doi: 10.1021/ja406860e
pubmed: 24059326
Laissue, P. P., Alghamdi, R. A., Tomancak, P., Reynaud, E. G. & Shroff, H. Assessing phototoxicity in live fluorescence imaging. Nat. Methods 14, 657–661 (2017).
doi: 10.1038/nmeth.4344
pubmed: 28661494
Rasnik, I., McKinney, S. A. & Ha, T. Nonblinking and longlasting single-molecule fluorescence imaging. Nat. Methods 3, 891–893 (2006).
doi: 10.1038/nmeth934
pubmed: 17013382
Vogelsang, J. et al. A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes. Angew. Chem. Int. Ed. 47, 5465–5469 (2008).
doi: 10.1002/anie.200801518
Cordes, T., Maiser, A., Steinhauer, C., Schermelleh, L. & Tinnefeld, P. Mechanisms and advancement of antifading agents for fluorescence microscopy and single-molecule spectroscopy. Phys. Chem. Chem. Phys. 13, 6699–6709 (2011).
doi: 10.1039/c0cp01919d
pubmed: 21311807
Bogdanov, A. M., Bogdanova, E. A., Chudakov, D. M., Gorodnicheva, T. V., Lukyanov, S. & Lukyanov, K. A. Cell culture medium affects GFP photostability: a solution. Nat. Methods 6, 859–860 (2009).
doi: 10.1038/nmeth1209-859
pubmed: 19935837
Bogdanov, A. M., Kudryavtseva, E. I. & Lukyanov, K. A. Anti-fading media for live cell GFP imaging. PLoS ONE 7, e53004 (2012).
doi: 10.1371/journal.pone.0053004
pubmed: 23285248
pmcid: 3528736
Hoebe, R. A., Van Oven, C. H., Gadella, T. W. J., Dhonukshe, P. B., Van Noorden, C. J. F. & Manders, E. M. M. Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging. Nat. Biotechnol. 25, 249–253 (2007).
doi: 10.1038/nbt1278
pubmed: 17237770
Donnert, G., Eggeling, C. & Hell, S. W. Major signal increase in fluorescence microscopy through dark-state relaxation. Nat. Methods 4, 81–86 (2007).
doi: 10.1038/nmeth986
pubmed: 17179937
Reindl, S. & Penzkofer, A. Higher excited-state triplet-singlet intersystem crossing of some organic dyes. Chem. Phys. 211, 431–439 (1996).
doi: 10.1016/0301-0104(96)00191-7
Redmond, R. W., Kochevar, I. E., Krieg, M., Smith, G. & McGimpsey, W. G. Excited-state relaxation in cyanine dyes: a remarkably efficient reverse intersystem crossing from upper triplet levels. J. Phys. Chem. A 101, 2773–2777 (1997).
doi: 10.1021/jp963001f
Ringemann, C., Schönle, A., Giske, A., von Middendorff, C., Hell, S. W. & Eggeling, C. Enhancing fluorescence brightness: effect of reverse intersystem crossing studied by fluorescence fluctuation spectroscopy. Chemphyschem 9, 612–624 (2008).
doi: 10.1002/cphc.200700596
pubmed: 18324718
Byrdin, M., Duan, C., Bourgeois, D. & Brettel, K. A long-lived triplet state is the entrance gateway to oxidative photochemistry in green fluorescent proteins. J. Am. Chem. Soc. 140, 2897–2905 (2018).
doi: 10.1021/jacs.7b12755
pubmed: 29394055
Peng, B. et al. Optically modulated and optically activated delayed fluorescent proteins through dark state engineering. J. Phys. Chem. B 125, 5200–5209 (2021).
doi: 10.1021/acs.jpcb.1c00649
pubmed: 33978414
pmcid: 8767457
Barilero, T., Le Saux, T., Gosse, C. & Jullien, L. Fluorescent thermometers for dual-emission-wavelength measurements: molecular engineering and application to thermal imaging in a microsystem. Anal. Chem. 81, 7988–8000 (2009).
doi: 10.1021/ac901027f
pubmed: 19711963
Japaridze, A., Gogou, C., Kerssemakers, J. W. J., Nguyen, H. M. & Dekker, C. Direct observation of independently moving replisomes in Escherichia coli. Nat. Commun. 11, 3109 (2020).
doi: 10.1038/s41467-020-16946-7
pubmed: 32561741
pmcid: 7305307
Tiruvadi-Krishnan, S., Mannik, J., Kar, P., Lin, J., Amir, A. & Mannik, J. Coupling between DNA replication, segregation, and the onset of constriction in Escherichia coli. Cell Rep. 38, 110539 (2022).
doi: 10.1016/j.celrep.2022.110539
pubmed: 35320717
pmcid: 9003928
Kiepas, A., Voorand, E., Mubaid, F., Siegel, P. M. & Brown, C. M. Optimizing live-cell fluorescence imaging conditions to minimize phototoxicity. J. Cell Sci. 133, jcs242834 (2020).
doi: 10.1242/jcs.242834
pubmed: 31988150
Plamont, M. A. et al. Small fluorescence-activating and absorption-shifting tag for tunable protein imaging in vivo. Proc. Natl Acad. Sci. USA 113, 497–502 (2016).
doi: 10.1073/pnas.1513094113
pubmed: 26711992
Griesbeck, O., Baird, G. S., Campbell, R. E., Zacharias, D. A. & Tsien, R. Y. Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J. Biol. Chem. 276, 29188–29194 (2001).
doi: 10.1074/jbc.M102815200
pubmed: 11387331
Nguyen, A. W. & Daugherty, P. S. Evolutionary optimization of fluorescent proteins for intracellular FRET. Nat. Biotechnol. 23, 355–360 (2005).
doi: 10.1038/nbt1066
pubmed: 15696158
Balleza, E., Kim, J. M. & Cluzel, P. Systematic characterization of maturation time of fluorescent proteins in living cells. Nat. Methods 15, 47–51 (2018).
doi: 10.1038/nmeth.4509
pubmed: 29320486
Zimmer, M. Green fluorescent protein (GFP): applications, structure, and related photophysical behavior. Chem. Rev. 102, 759–781 (2002).
doi: 10.1021/cr010142r
pubmed: 11890756
Tsien, R. Y. The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544 (1998).
doi: 10.1146/annurev.biochem.67.1.509
pubmed: 9759496
Vargas, P., Terriac, E., Lennon-Dumenil, A. M. & Piel, M. Study of cell migration in microfabricated channels. J. Vis. Exp. 21, e51099 (2014).
Sormendi, S. et al. HIF2α is a direct regulator of neutrophil motility. Blood 137, 3416–3427 (2021).
doi: 10.1182/blood.2020007505
pubmed: 33619535
Ollion, J., Elez, M. & Robert, L. High-throughput detection and tracking of cells and intracellular spots in mother machine experiments. Nat. Protoc. 14, 3144–3161 (2019).
doi: 10.1038/s41596-019-0216-9
pubmed: 31554957
Tinevez, J. Y. et al. TrackMate: an open and extensible platform for single-particle tracking. Methods 115, 80–90 (2017).
doi: 10.1016/j.ymeth.2016.09.016
pubmed: 27713081
Jaqaman, K. et al. Robust single-particle tracking in live-cell time-lapse sequences. Nat. Methods 5, 695–702 (2008).
doi: 10.1038/nmeth.1237
pubmed: 18641657
pmcid: 2747604
Reyes-Lamothe, R., Sherratt, D. J. & Leake, M. C. Stoichiometry and architecture of active DNA replication machinery in Escherichia coli. Science 328, 498–501 (2010).
doi: 10.1126/science.1185757
pubmed: 20413500
pmcid: 2859602
Wang, P. et al. Robust growth of Escherichia coli. Curr. Biol. 20, 1099–1103 (2010).
doi: 10.1016/j.cub.2010.04.045
pubmed: 20537537
pmcid: 2902570
Robert, L., Ollion, J. & Elez, M. Real-time visualization of mutations and their fitness effects in single bacteria. Nat. Protoc. 14, 3126–3143 (2019).
doi: 10.1038/s41596-019-0215-x
pubmed: 31554956
Zaritsky, A., Wang, P. & Vischer, N. O. E. Instructive simulation of the bacterial cell division cycle. Microbiology (Reading) 157, 1876–1885 (2011).
doi: 10.1099/mic.0.049403-0
pubmed: 21565934
Robert, L., Ollion, J., Robert, J., Song, X., Matic, I. & Elez, M. Mutation dynamics and fitness effects followed in single cells. Science 359, 1283–1286 (2018).
doi: 10.1126/science.aan0797
pubmed: 29590079