Inhibition of efflux transporters by poly ADP-ribose polymerase inhibitors.
BCRP
PARP inhibitors
drug-drug interaction
efflux transporters
statins
Journal
Basic & clinical pharmacology & toxicology
ISSN: 1742-7843
Titre abrégé: Basic Clin Pharmacol Toxicol
Pays: England
ID NLM: 101208422
Informations de publication
Date de publication:
Oct 2023
Oct 2023
Historique:
revised:
14
07
2023
received:
05
05
2023
accepted:
21
07
2023
pubmed:
4
8
2023
medline:
4
8
2023
entrez:
4
8
2023
Statut:
ppublish
Résumé
Poly ADP-ribose polymerase (PARP) inhibitors have been approved for the treatment of various cancers. They share a similar mechanism of action but have differences in pharmacokinetic characteristics and potential for drug-drug interactions (DDI). This study evaluated the potential ATP-binding cassette transporter-mediated interactions between PARP inhibitors (niraparib, olaparib and rucaparib) and statins (atorvastatin and rosuvastatin). We studied the inhibitory activity of PARP inhibitors on breast cancer resistance protein (BCRP), multidrug resistance-associated protein 3 (MRP3) and P-glycoprotein (P-gp) using vesicular transport assays and determined the concentrations required for 50% inhibition (IC
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
428-436Subventions
Organisme : Academy of Finland
ID : 314396
Organisme : Sigrid Jusélius Foundation
Organisme : Cancer Foundation Finland
Informations de copyright
© 2023 The Authors. Basic & Clinical Pharmacology & Toxicology published by John Wiley & Sons Ltd on behalf of Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).
Références
Gupte R, Liu Z, Kraus WL. PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes. Genes Dev. 2017;31(2):101-126. doi:10.1101/gad.291518.116
Pommier Y, O'Connor MJ, de Bono J. Laying a trap to kill cancer cells: PARP inhibitors and their mechanisms of action. Sci Transl Med. 2016;8(362):362ps17. doi:10.1126/scitranslmed.aaf9246
Ledermann J, Harter P, Gourley C, et al. Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer: a preplanned retrospective analysis of outcomes by BRCA status in a randomised phase 2 trial. Lancet Oncol. 2014;15(8):852-861. doi:10.1016/S1470-2045(14)70228-1
Pilié PG, Gay CM, Byers LA, O'Connor MJ, Yap TA. PARP inhibitors: extending benefit beyond BRCA-mutant cancers. Clin Cancer Res. 2019;25(13):3759-3771. doi:10.1158/1078-0432.CCR-18-0968
Curtin NJ, Szabo C. Poly (ADP-ribose) polymerase inhibition: past, present and future. Nat Rev Drug Discov. 2020;19(10):711-736. doi:10.1038/s41573-020-0076-6
Valabrega G, Scotto G, Tuninetti V, Pani A, Scaglione F. Differences in PARP inhibitors for the treatment of ovarian cancer: mechanisms of action, pharmacology, safety, and efficacy. Int J Mol Sci. 2021;22(8):4203. doi:10.3390/ijms22084203
McCormick A, Swaisland H. In vitro assessment of the roles of drug transporters in the disposition and drug-drug interaction potential of olaparib. Xenobiotica. 2017;47(10):903-915. doi:10.1080/00498254.2016.1241449
European Medicines Agency. Zejula EPAR product information. Published online 2017. https://www.ema.europa.eu/en/medicines/human/EPAR/zejula
Liao M, Jaw-Tsai S, Beltman J, Simmons AD, Harding TC, Xiao JJ. Evaluation of in vitro absorption, distribution, metabolism, and excretion and assessment of drug-drug interaction of rucaparib, an orally potent poly (ADP-ribose) polymerase inhibitor. Xenobiotica. 2020;50(9):1032-1042. doi:10.1080/00498254.2020.1737759
Keskitalo JE, Kurkinen KJ, Neuvonen PJ, Niemi M. ABCB1 haplotypes differentially affect the pharmacokinetics of the acid and lactone forms of simvastatin and atorvastatin. Clin Pharmacol Ther. 2008;84(4):457-461. doi:10.1038/clpt.2008.25
Keskitalo JE, Zolk O, Fromm MF, Kurkinen KJ, Neuvonen PJ, Niemi M. ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and Rosuvastatin. Clin Pharmacol Ther. 2009;86(2):197-203. doi:10.1038/clpt.2009.79
Niemi M, Pasanen MK, Neuvonen PJ. Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol Rev. 2011;63(1):157-181. doi:10.1124/pr.110.002857
Deng F, Tuomi SK, Neuvonen M, et al. Comparative hepatic and intestinal efflux transport of statins. Drug Metab Dispos. 2021;49(9):750-759. doi:10.1124/dmd.121.000430
Lehtisalo M, Taskinen S, Tarkiainen EK, et al. A comprehensive pharmacogenomic study indicates roles for SLCO1B1, ABCG2 and SLCO2B1 in rosuvastatin pharmacokinetics. Br J Clin Pharmacol. 2023;89(1):242-252. doi:10.1111/bcp.15485
European Medicines Agency. Lynparza EPAR product information. Accessed January 25, 2022. Published online 2015. https://www.ema.europa.eu/en/medicines/human/EPAR/lynparza
Lehtisalo M, Kiander W, Filppula AM, et al. Rhabdomyolysis during concomitant ticagrelor and rosuvastatin - a breast cancer resistance protein -mediated drug interaction? Br J Clin Pharmacol Published online February. 2023;5(7):2309-2315. doi:10.1111/bcp.15684
Allen JD, van Loevezijn A, Lakhai JM, et al. Potent and specific inhibition of the breast cancer resistance protein multidrug transporter in vitro and in mouse intestine by a novel analogue of fumitremorgin C. Mol Cancer Ther. 2002;1(6):417-425.
Köck K, Ferslew BC, Netterberg I, et al. Risk factors for development of Cholestatic drug-induced liver injury: inhibition of hepatic basolateral bile acid transporters multidrug resistance-associated proteins 3 and 4. Drug Metab Dispos. 2014;42(4):665-674. doi:10.1124/dmd.113.054304
Herédi-Szabó K, Palm JE, Andersson TB, et al. A P-gp vesicular transport inhibition assay - optimization and validation for drug-drug interaction testing. Eur J Pharm Sci. 2013;49(4):773-781. doi:10.1016/j.ejps.2013.04.032
Tveden-Nyborg P, Bergmann TK, Jessen N, Simonsen U, Lykkesfeldt J. BCPT policy for experimental and clinical studies. Basic Clin Pharmacol Toxicol. 2021;128(1):4-8. doi:10.1111/bcpt.13492
Rostami-Hodjegan A, Tucker G. “In silico” simulations to assess the “in vivo” consequences of “in vitro” metabolic drug-drug interactions. Drug Discov Today Technol. 2004;1(4):441-448. doi:10.1016/j.ddtec.2004.10.002
van Andel L, Rosing H, Zhang Z, et al. Determination of the absolute oral bioavailability of niraparib by simultaneous administration of a 14C-microtracer and therapeutic dose in cancer patients. Cancer Chemother Pharmacol. 2018;81(1):39-46. doi:10.1007/s00280-017-3455-x
Pilla Reddy V, Bui K, Scarfe G, Zhou D, Learoyd M. Physiologically based pharmacokinetic modeling for Olaparib dosing recommendations: bridging formulations, drug interactions, and patient populations. Clin Pharmacol Ther. 2019;105(1):229-241. doi:10.1002/cpt.1103
FDA. Lynparza drug approval package: application no.: 208558Orig1s000. 2017. Published online 2017.
Wilson RH, Evans TJ, Middleton MR, et al. A phase I study of intravenous and oral rucaparib in combination with chemotherapy in patients with advanced solid tumours. Br J Cancer. 2017;116(7):884-892. doi:10.1038/bjc.2017.36
Shapiro GI, Kristeleit RS, Burris HA, et al. Pharmacokinetic study of Rucaparib in patients with advanced solid tumors. Clin Pharmacol Drug Dev. 2019;8(1):107-118. doi:10.1002/cpdd.575
Ito K, Iwatsubo T, Kanamitsu S, Ueda K, Suzuki H, Sugiyama Y. Prediction of pharmacokinetic alterations caused by drug-drug interactions: metabolic interaction in the liver. Pharmacol Rev. 1998;50(3):387-412.
Elsby R, Martin P, Surry D, Sharma P, Fenner K. Solitary inhibition of the breast cancer resistance protein efflux transporter results in a clinically significant drug-drug interaction with Rosuvastatin by causing up to a 2-fold increase in statin exposure. Drug Metab Dispos. 2016;44(3):398-408. doi:10.1124/dmd.115.066795
Xiao JJ, Nowak D, Ramlau R, et al. Evaluation of drug-drug interactions of Rucaparib and CYP1A2, CYP2C9, CYP2C19, CYP3A, and P-gp substrates in patients with an advanced solid tumor. Clin Transl Sci. 2019;12(1):58-65. doi:10.1111/cts.12600
Liao M, Jeziorski KG, Tomaszewska-Kiecana M, et al. A phase 1, open-label, drug-drug interaction study of rucaparib with rosuvastatin and oral contraceptives in patients with advanced solid tumors. Cancer Chemother Pharmacol. 2021;88(5):887-897. doi:10.1007/s00280-021-04338-7
McCormick A, Swaisland H, Reddy VP, Learoyd M, Scarfe G. In vitro evaluation of the inhibition and induction potential of olaparib, a potent poly (ADP-ribose) polymerase inhibitor, on cytochrome P450. Xenobiotica. 2018;48(6):555-564. doi:10.1080/00498254.2017.1346332
Zolnerciks JK, Booth-Genthe CL, Gupta A, Harris J, Unadkat JD. Substrate- and species-dependent inhibition of P-glycoprotein-mediated transport: implications for predicting in vivo drug interactions. J Pharm Sci. 2011;100(8):3055-3061. doi:10.1002/jps.22566
Riechelmann RP, Del Giglio A. Drug interactions in oncology: how common are they? Ann Oncol. 2009;20(12):1907-1912. doi:10.1093/annonc/mdp369
van Leeuwen RWF, Brundel DHS, Neef C, et al. Prevalence of potential drug-drug interactions in cancer patients treated with oral anticancer drugs. Br J Cancer. 2013;108(5):1071-1078. doi:10.1038/bjc.2013.48
Deng F, Sjöstedt N, Santo M, Neuvonen M, Niemi M, Kidron H. Novel inhibitors of breast cancer resistance protein (BCRP, ABCG2) among marketed drugs. Eur J Pharm Sci. 2023;181:106362. doi:10.1016/j.ejps.2022.106362