The ptotic tongue-imaging appearance and pathology localization along the course of the hypoglossal nerve.
Denervation
Hypoglossal
Hypoglossal palsy
MRI
Ptosis
Journal
Neuroradiology
ISSN: 1432-1920
Titre abrégé: Neuroradiology
Pays: Germany
ID NLM: 1302751
Informations de publication
Date de publication:
Oct 2023
Oct 2023
Historique:
received:
27
05
2023
accepted:
24
07
2023
medline:
13
9
2023
pubmed:
4
8
2023
entrez:
4
8
2023
Statut:
ppublish
Résumé
CT and MRI findings of tongue ptosis and atrophy should alert radiologists to potential pathology along the course of the hypoglossal nerve (cranial nerve XII), a purely motor cranial nerve which supplies the intrinsic and extrinsic muscles of the tongue. While relatively specific for hypoglossal nerve pathology, these findings do not accurately localize the site or cause of denervation. A detailed understanding of the anatomic extent of the nerve, which crosses multiple anatomic spaces, is essential to identify possible underlying pathology, which ranges from benign postoperative changes to life-threatening medical emergencies. This review will describe key imaging findings of tongue denervation, segmental anatomy of the hypoglossal nerve, imaging optimization, and comprehensive imaging examples of diverse pathology which may affect the hypoglossal nerve. Armed with this knowledge, radiologists will increase their sensitivity for detection of pathology and provide clinically relevant differential diagnoses when faced with findings of tongue ptosis and denervation.
Identifiants
pubmed: 37540288
doi: 10.1007/s00234-023-03204-y
pii: 10.1007/s00234-023-03204-y
pmc: PMC10497427
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
1425-1438Informations de copyright
© 2023. The Author(s).
Références
Thompson EO, Smoker WR (1994) Hypoglossal nerve palsy: a segmental approach. Radiographics 14:939–958
doi: 10.1148/radiographics.14.5.7991825
pubmed: 7991825
Bademci G, Yasargil MG (2006) Microsurgical anatomy of the hypoglossal nerve. J Clin Neurosci 13:841–847. https://doi.org/10.1016/j.jocn.2005.12.028
doi: 10.1016/j.jocn.2005.12.028
pubmed: 16935514
Mu L, Chen J, Li J et al (2021) Innervation of human soft palate muscles. Anat Rec (Hoboken) 304:1054–1070. https://doi.org/10.1002/ar.24531
doi: 10.1002/ar.24531
pubmed: 33034133
Loh C, Maya MM, Go JL (2002) Cranial nerve XII: the hypoglossal nerve. Semin Ultrasound CT MR 23:256–265
doi: 10.1016/S0887-2171(02)90050-8
pubmed: 12169000
Stino AM, Smith BE, Temkit M, Reddy SN (2016) Hypoglossal nerve palsy: 245 cases. Muscle Nerve 54:1050–1054. https://doi.org/10.1002/mus.25197
doi: 10.1002/mus.25197
pubmed: 27214783
Lin HC, Barkhaus PE (2009) Cranial nerve XII: the hypoglossal nerve. Semin Neurol 29:45–52. https://doi.org/10.1055/s-0028-1124022
doi: 10.1055/s-0028-1124022
pubmed: 19214932
Batchelor TT, Krol GS, DeAngelis LM (1996) Neuroimaging abnormalities with hypoglossal nerve palsies. J Neuroimag 7:86–88
doi: 10.1111/jon19977286
Kamath S, Venkatanarasimha N, Walsh MA, Hughes PM (2008) MRI appearance of muscle denervation. Skeletal Radiol 37:397–404. https://doi.org/10.1007/s00256-007-0409-0
doi: 10.1007/s00256-007-0409-0
pubmed: 18360752
Purohit BS, Ailianou A, Dulguerov N, Becker CD, Ratib O, Becker M (2014) FDG-PET/CT pitfalls in oncological head and neck imaging. Insights Imaging 5:585–602
doi: 10.1007/s13244-014-0349-x
pubmed: 25154759
pmcid: 4195840
Jacobs C, Harnsberger H, Lufkin RB, Osborn AG, Smoker WR, Parkin JL (1987) Vagal neuropathy: evaluation with CT and MR imaging. Radiology 164:97–102
doi: 10.1148/radiology.164.1.3588933
pubmed: 3588933
Li AE, Greditzer HG, Melisaratos DP, Wolfe SW, Feinberg JH, Sneag DB (2015) MRI findings of spinal accessory neuropathy. Clin Radiol 71:316–320
doi: 10.1016/j.crad.2015.11.015
Iaconetta G, Solari D, Villa A et al (2018) The hypoglossal nerve: anatomical study of its entire course. World Neurosurg 109:e486–e492. https://doi.org/10.1016/j.wneu.2017.10.006
doi: 10.1016/j.wneu.2017.10.006
pubmed: 29032218
Blitz AM, Choudhri AF, Chonka ZD et al (2014) Anatomic considerations, nomenclature, and advanced cross-sectional imaging techniques for visualization of the cranial nerve segments by MR imaging. Neuroimaging Clin N Am 24:1–15. https://doi.org/10.1016/j.nic.2013.03.020
doi: 10.1016/j.nic.2013.03.020
pubmed: 24210309
Yousry I, Moriggl B, Schmid U et al (2002) Detailed anatomy of the intracranial segment of the hypoglossal nerve: neurovascular relationships and landmarks on magnetic resonance imaging sequences. J Neurosurg 96:1113–1122
doi: 10.3171/jns.2002.96.6.1113
pubmed: 12066914
Tsutsumi S, Ono H, Ishii H, Yasumoto Y (2019) The intracanalicular segment of the hypoglossal nerve: an anatomical study using magnetic resonance imaging. J Clin Neurosci 68:295–301. https://doi.org/10.1016/j.jocn.2019.07.023
doi: 10.1016/j.jocn.2019.07.023
pubmed: 31326283
Voydovic F, Whyte A, Slavotinek J (1995) The hypoglossal canal: normal MR enhancement pattern. AJNR Am J Neuroradiol 16:1707–1719
Spittau B, Millan DS, El-Sherifi S et al (2015) Dural arteriovenous fistulas of the hypoglossal canal: systematic review on imaging anatomy, clinical findings, and endovascular management. J Neurosurg 122:883–903. https://doi.org/10.3171/2014.10.JNS14377
doi: 10.3171/2014.10.JNS14377
pubmed: 25415064
Baek TW, Kang Y, Lee HJ (2021) Improved lesion conspicuity with contrast-enhanced 3D T1 TSE black-blood imaging in cranial neuritis: a comparative study of contrast-enhanced 3D T1 TSE, 3D T1 fast-spoiled gradient echo, and 3D T2 FLAIR. AJNR Am J Neuroradiol 42:945–950. https://doi.org/10.3174/ajnr.A7025
doi: 10.3174/ajnr.A7025
pubmed: 33707287
pmcid: 8115360
Casselman J, Van der Cruyssen F, Vanhove F et al (2023) 3D CRANI, a novel MR neurography sequence, can reliable visualise the extraforaminal cranial and occipital nerves. Eur Radiol 33:2861–2870. https://doi.org/10.1007/s00330-022-09269-2
doi: 10.1007/s00330-022-09269-2
pubmed: 36435876
Kinger NP, Chien LC, Sharma PS et al (2022) Comparison of 3D constructive interference in steady state (CISS) and T2 sampling perfection with application optimized contrasts using different flip angle evolution MR imaging of the intracranial trigeminal nerve and central skull base neuroforamina. Neuroradiol J 35:678–683. https://doi.org/10.1177/19714009221084248
doi: 10.1177/19714009221084248
pubmed: 35400223
Weindling SM, Wood CP, Hoxworth JM (2017) Hypoglossal canal lesions: distinctive imaging features and simple diagnostic algorithm. AJR Am J Roentgenol 209:1119–1127. https://doi.org/10.2214/AJR.17.18102
doi: 10.2214/AJR.17.18102
pubmed: 28813199
Kuwada C, Mannion K, Aulino JM, Kanekar SG (2012) Imaging of the carotid space. Otolaryngol Clin North Am 45:1273–1292. https://doi.org/10.1016/j.otc.2012.08.012
doi: 10.1016/j.otc.2012.08.012
pubmed: 23153749
Lasjaunias P, Berenstein A, Ter Brugge KG (2001) Surgical neuroangiography 1: clinical vascular anatomy and variations. Springer-Verlag, Berlin, Germany
doi: 10.1007/978-3-662-10172-8