Absolute and relative GFR and contrast medium dose/GFR ratio: cornerstones when predicting the risk of acute kidney injury.
Acute kidney injury
Angiography
Computed tomography
Contrast media
Glomerular filtration rate
Journal
European radiology
ISSN: 1432-1084
Titre abrégé: Eur Radiol
Pays: Germany
ID NLM: 9114774
Informations de publication
Date de publication:
04 Aug 2023
04 Aug 2023
Historique:
received:
07
12
2022
accepted:
24
05
2023
revised:
19
05
2023
pubmed:
4
8
2023
medline:
4
8
2023
entrez:
4
8
2023
Statut:
aheadofprint
Résumé
Glomerular filtration rate (GFR) is considered the best overall index of kidney function in health and disease and its use is recommended to evaluate the risk of iodine contrast medium-induced acute kidney injury (CI-AKI) either as a single parameter or as a ratio between the total contrast medium dose (gram iodine) and GFR. GFR may be expressed in absolute terms (mL/min) or adjusted/indexed to body surface area, relative GFR (mL/min/1.73 m
Identifiants
pubmed: 37540321
doi: 10.1007/s00330-023-09962-w
pii: 10.1007/s00330-023-09962-w
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Commentaires et corrections
Type : ErratumIn
Type : ErratumIn
Informations de copyright
© 2023. The Author(s).
Références
Levey AS, Coresh J, Tighiouart H, Greene T, Inker LA (2019) Measured and estimated glomerular filtration rate: current status and future directions. Nat Rev Nephrol 16:51–64
pubmed: 31527790
doi: 10.1038/s41581-019-0191-y
Davenport MS, Perazella MA, Yee J et al (2020) Use of intravenous iodinated contrast media in patients with kidney disease: consensus statements from the American College of Radiology and the National Kidney Foundation. Radiology 294:660–668
pubmed: 31961246
doi: 10.1148/radiol.2019192094
van der Molen AJ, Reimer P, Dekkers IA et al (2018) Post-contrast acute kidney injury - Part 1: definition, clinical features, incidence, role of contrast medium and risk factors: Recommendations for updated ESUR Contrast Medium Safety Committee guidelines. Eur Radiol 28:2845–2855
pubmed: 29426991
pmcid: 5986826
doi: 10.1007/s00330-017-5246-5
van der Molen AJ, Reimer P, Dekkers IA et al (2018) Post-contrast acute kidney injury. Part 2: risk stratification, role of hydration and other prophylactic measures, patients taking metformin and chronic dialysis patients: Recommendations for updated ESUR Contrast Medium Safety Committee guidelines. Eur Radiol 28:2856–2869
pubmed: 29417249
pmcid: 5986837
doi: 10.1007/s00330-017-5247-4
Nyman U, Ahlkvist J, Aspelin P et al (2018) Preventing contrast medium-induced acute kidney injury: side-by-side comparison of Swedish-ESUR guidelines. Eur Radiol 28:5384–5395
pubmed: 30132106
doi: 10.1007/s00330-018-5678-6
Chen M-L, Lekso L, Williams R (2001) Measures of exposure versus measures of rate and extent of absorption. Clin Pharmacokinet 40:565–572
pubmed: 11523723
doi: 10.2165/00003088-200140080-00001
Sherwin PF, Cambron R, Johnson JA, Pierro JA (2005) Contrast dose-to-creatinine clearance ratio as a potential indicator of risk for radiocontrast-induced nephropathy: correlation of D/CrCL with area under the contrast concentration-time curve using iodixanol. Invest Radiol 40:598–603
pubmed: 16118553
doi: 10.1097/01.rli.0000174476.62724.82
Laskey WK, Jenkins C, Selzer F et al (2007) Volume-to-creatinine clearance ratio: a pharmacokinetically based risk factor for prediction of early creatinine increase after percutaneous coronary intervention. J Am Coll Cardiol 50:584–590
pubmed: 17692741
doi: 10.1016/j.jacc.2007.03.058
Nyman U, Björk J, Aspelin P, Marenzi G (2008) Contrast medium dose-to-GFR ratio: a measure of systemic exposure to predict contrast-induced nephropathy after percutaneous coronary intervention. Acta Radiol 49:658–667
pubmed: 18568558
doi: 10.1080/02841850802050762
Gurm HS, Dixon SR, Smith DE et al (2011) Renal function-based contrast dosing to define safe limits of radiographic contrast media in patients undergoing percutaneous coronary interventions. J Am Coll Cardiol 58:907–914
pubmed: 21851878
doi: 10.1016/j.jacc.2011.05.023
Su TH, Hsieh CH, Chan YL et al (2021) Intravenous CT contrast media and acute kidney injury: a multicenter emergency department-based study. Radiology 301:571–581
pubmed: 34636631
doi: 10.1148/radiol.2021204446
Delanaye P, Ebert N, Melsom T et al (2016) Iohexol plasma clearance for measuring glomerular filtration rate in clinical practice and research: a review. Part 1: How to measure glomerular filtration rate with iohexol? Clin Kidney J 9:682–699
pubmed: 27679715
pmcid: 5036902
doi: 10.1093/ckj/sfw070
Delanaye P, Melsom T, Ebert N et al (2016) Iohexol plasma clearance for measuring glomerular filtration rate in clinical practice and research: a review. Part 2: Why to measure glomerular filtration rate with iohexol? Clin Kidney J 9:700–704
pubmed: 27679716
pmcid: 5036903
doi: 10.1093/ckj/sfw071
Nyman U, Björk J, Bäck SE, Sterner G, Grubb A (2016) Estimating GFR prior to contrast medium examinations - what the radiologist needs to know! Eur Radiol 26:425–435
pubmed: 26017739
doi: 10.1007/s00330-015-3842-9
Food and Drug Administration (2020) Guidance for industry pharmacokinetics in patients with impaired renal function – study design, data analysis, and impact on dosing. Available at https://www.fda.gov/media/78573/download . Accessed 28 Mar 2023
European Medicines Agency (2014) Guideline on the evaluation of the pharmacokinetics of medicinal products in patients with decreased renal function. Avaialble at https://www.ema.europa.eu/en/documents/scientific-guideline/draft-guideline-evaluation-pharmacokinetics-medicinal-products-patients-decreased-renal-function_en.pdf . Accessed 28 Mar 2023
Matzke GR, Aronoff GR, Atkinson AJ Jr et al (2011) Drug dosing consideration in patients with acute and chronic kidney disease-a clinical update from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int 80:1122–1137
pubmed: 21918498
doi: 10.1038/ki.2011.322
Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group (2013) KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl 3:1–150
Frennby B, Sterner G (2002) Contrast media as markers of GFR. Eur Radiol 12:475–484
pubmed: 11870453
doi: 10.1007/s003300100864
Nyman U, Almén T, Aspelin P, Hellström M, Kristiansson M, Sterner G (2005) Contrast-medium-Induced nephropathy correlated to the ratio between dose in gram iodine and estimated GFR in ml/min. Acta Radiol 46:830–842
pubmed: 16392608
doi: 10.1080/02841850500335051
Heaf JG (2007) The origin of the 1 x 73–m2 body surface area normalization: problems and implications. Clin Physiol Funct Imaging 27:135–137
pubmed: 17445062
doi: 10.1111/j.1475-097X.2006.00718.x
Nyman U, Grubb A, Larsson A et al (2014) The revised Lund-Malmo GFR estimating equation outperforms MDRD and CKD-EPI across GFR, age and BMI intervals in a large Swedish population. Clin Chem Lab Med 52:815–824
pubmed: 24334413
doi: 10.1515/cclm-2013-0741
Pottel H, Björk J, Courbebaisse M et al (2021) development and validation of a modified full age spectrum creatinine-based equation to estimate glomerular filtration rate: a cross-sectional analysis of pooled data. Ann Intern Med 174:183–191
pubmed: 33166224
doi: 10.7326/M20-4366
Tikuisis P, Meunier P, Jubenville CE (2001) Human body surface area: measurement and prediction using three dimensional body scans. Eur J Appl Physiol 85:264–271
pubmed: 11560080
doi: 10.1007/s004210100484
Delanaye P, Mariat C, Cavalier E, Krzesinski JM (2009) Errors induced by indexing glomerular filtration rate for body surface area: reductio ad absurdum. Nephrol Dial Transplant 24:3593–3596
pubmed: 19734136
doi: 10.1093/ndt/gfp431
DuBois D, DuBois E (1916) A formula to estimate the approximate surface area if height and weight be known. Arch Intern Med 17:863–871
doi: 10.1001/archinte.1916.00080130010002
Sjöström P, Tidman M, Jones I (2004) The shorter T1/2 of cystatin C explains the earlier change of its serum level compared to serum creatinine. Clin Nephrol 62:241–242
pubmed: 15481859
doi: 10.5414/CNP62241
Amiri A, Ghanavati R, RiahiBeni H, Sezavar SH, Sheykhvatan M, Arab M (2018) Metabolic syndrome and the iodine-dose/creatinine clearance ratio as determinants of contrast-induced acute kidney injury. Cardiorenal Med 8:217–227
pubmed: 29909417
pmcid: 6170904
doi: 10.1159/000488374
Barbieri L, Verdoia M, Marino P, Suryapranata H, De Luca G (2016) Contrast volume to creatinine clearance ratio for the prediction of contrast-induced nephropathy in patients undergoing coronary angiography or percutaneous intervention. Eur J Prev Cardiol 23:931–937
pubmed: 26525064
doi: 10.1177/2047487315614493
Khalil WA, El-Awady W, El-Menshawy MD, Emad M (2018) The early detection and prevention of contrast induced nephropathy post coronary intervention in catheterization unit. J Ind Coll cardiol 8:157–161
doi: 10.1016/j.jicc.2018.10.001
Liu Y, Chen JY, Tan N et al (2015) Safe limits of contrast vary with hydration volume for prevention of contrast-induced nephropathy after coronary angiography among patients with a relatively low risk of contrast-induced nephropathy. Circ Cardiovasc Interv 8:e001859
Worasuwannarak S, Pornratanarangsi S (2010) Prediction of contrast-induced nephropathy in diabetic patients undergoing elective cardiac catheterization or PCI: role of volume-to-creatinine clearance ratio and iodine dose-to-creatinine clearance ratio. J Med Assoc Thai 93(Suppl 1):S29-34
pubmed: 20364554
Abe D, Sato A, Hoshi T et al (2014) Clinical predictors of contrast-induced acute kidney injury in patients undergoing emergency versus elective percutaneous coronary intervention. Circ J 78:85–91
pubmed: 24107362
doi: 10.1253/circj.CJ-13-0574
Ando G, de Gregorio C, Morabito G, Trio O, Saporito F, Oreto G (2014) Renal function-adjusted contrast volume redefines the baseline estimation of contrast-induced acute kidney injury risk in patients undergoing primary percutaneous coronary intervention. Circ Cardiovasc Interv 7:465–472
pubmed: 25027519
doi: 10.1161/CIRCINTERVENTIONS.114.001545
Celik O, Ozturk D, Akin F et al (2015) Association between contrast media volume-glomerular filtration rate ratio and contrast-induced acute kidney injury after primary percutaneous coronary intervention. Angiology 66:519–524
pubmed: 25005762
doi: 10.1177/0003319714542277
Kim JH, Yang JH, Choi SH et al (2014) Predictors of outcomes of contrast-induced acute kidney injury after percutaneous coronary intervention in patients with chronic kidney disease. Am J Cardiol 114:1830–1835
pubmed: 25438909
doi: 10.1016/j.amjcard.2014.09.022
Nie Z, Liu Y, Wang C, Sun G, Chen G, Lu Z (2021) Safe limits of contrast media for contrast-induced nephropathy: a multicenter prospective cohort study. Front Med (Lausanne) 8:701062
pubmed: 34490295
doi: 10.3389/fmed.2021.701062
Nozue T, Michishita I, Iwaki T, Mizuguchi I, Miura M (2009) Contrast medium volume to estimated glomerular filtration rate ratio as a predictor of contrast-induced nephropathy developing after elective percutaneous coronary intervention. J Cardiol 54:214–220
pubmed: 19782258
doi: 10.1016/j.jjcc.2009.05.008
Yoon HJ, Hur SH (2011) Determination of safe contrast media dosage to estimated glomerular filtration rate ratios to avoid contrast-induced nephropathy after elective percutaneous coronary intervention. Korean Circ J 41:265–271
pubmed: 21731568
pmcid: 3116105
doi: 10.4070/kcj.2011.41.5.265
Altmann DB, Zwas D, Spatz A et al (1997) Use of the contrast volume estimated creatinine clearance ratio to predict renal failure after angiography. J Interv Cardiol 10:113–119
doi: 10.1111/j.1540-8183.1997.tb00018.x
Delanaye P, Björk J, Courbebaisse M et al (2022) Performance of creatinine-based equations to estimate glomerular filtration rate with a methodology adapted to the context of drug dosage adjustment. Br J Clin Pharmacol 88:2118–2127
pubmed: 34709683
doi: 10.1111/bcp.15132
Mehran R, Aymong ED, Nikolsky E et al (2004) A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation. J Am Coll Cardiol 44:1393–1399
pubmed: 15464318
Kooiman J, Seth M, Share D, Dixon S, Gurm HS (2014) The association between contrast dose and renal complications post PCI across the continuum of procedural estimated risk. PLoS One 9
Gurm HS, Seth M, Mehran R et al (2016) Impact of contrast dose reduction on incidence of acute kidney injury (AKI) among patients undergoing PCI: a modeling study. J Invasive Cardiol 28:142–146
pubmed: 26773238
Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16:31–41
pubmed: 1244564
doi: 10.1159/000180580
Soveri I, Berg UB, Björk J et al (2014) Measuring GFR: a systematic review. Am J Kidney Dis 64:411–424
pubmed: 24840668
doi: 10.1053/j.ajkd.2014.04.010
Myers GL, Miller WG, Coresh J et al (2006) Recommendations for improving serum creatinine measurement: a report from the Laboratory Working Group of the National Kidney Disease Education Program. Clin Chem 52:5–18
pubmed: 16332993
doi: 10.1373/clinchem.2005.0525144
Einstein AJ, Newhouse JH (2019) Differences in nephrotoxicity between modes of iodinated contrast material administration in patients suspected of having coronary artery disease. Radiology 292:673–675
pubmed: 31268825
doi: 10.1148/radiol.2019191163
Nyman U, Almén T, Jacobsson B, Aspelin P (2012) Are intravenous injections of contrast media really less nephrotoxic than intra-arterial injections? Eur Radiol 22:1366–1371
pubmed: 22307815
doi: 10.1007/s00330-011-2371-4
Aspelin P, Almen T (1976) Studies on the acute toxicity of ionic and non-ionic contrast media following rapid intravenous injection. An experimental study in mice. Invest Radiol 11:309–314
pubmed: 8404
doi: 10.1097/00004424-197607000-00008
Karlsberg RP, Dohad SY, Sheng R (2011) Contrast medium-induced acute kidney injury: comparison of intravenous and intraarterial administration of iodinated contrast medium. J Vasc Interv Radiol 22:1159–1165
pubmed: 21570871
doi: 10.1016/j.jvir.2011.03.020
Kooiman J, Le Haen PA, Gezgin G, et al (2013) Contrast-induced acute kidney injury and clinical outcomes after intra-arterial and intravenous contrast administration: risk comparison adjusted for patient characteristics by design. Am Heart J 165:793–799, 799 e791
McDonald JS, Leake CB, McDonald RJ et al (2016) Acute kidney injury after intravenous versus intra-arterial contrast material administration in a paired cohort. Invest Radiol 51:804–809
pubmed: 27299579
doi: 10.1097/RLI.0000000000000298
Tong GE, Kumar S, Chong KC et al (2016) Risk of contrast-induced nephropathy for patients receiving intravenous vs. intra-arterial iodixanol administration. Abdom Radiol (NY) 41:91–99
pubmed: 26830615
doi: 10.1007/s00261-015-0611-9
Chaudhury P, Armanyous S, Harb SC et al (2019) Intra-arterial versus intravenous contrast and renal injury in chronic kidney disease: a propensity-matched analysis. Nephron 141:31–40
pubmed: 30368506
doi: 10.1159/000494047
Nijssen EC, Rennenberg RJ, Nelemans PJ et al (2017) Prophylactic hydration to protect renal function from intravascular iodinated contrast material in patients at high risk of contrast-induced nephropathy (AMACING): a prospective, randomised, phase 3, controlled, open-label, non-inferiority trial. Lancet 389:1312–1322
pubmed: 28233565
doi: 10.1016/S0140-6736(17)30057-0
From AM, Bartholmai BJ, Williams AW, Cha SS, McDonald FS (2008) Mortality associated with nephropathy after radiographic contrast exposure. Mayo Clin Proc 83:1095–1100
pubmed: 18828968
doi: 10.4065/83.10.1095
Schönenberger E, Martus P, Bosserdt M et al (2019) Kidney injury after intravenous versus intra-arterial contrast agent in patients suspected of having coronary artery disease: a randomized trial. Radiology 292:664–672
pubmed: 31264950
doi: 10.1148/radiol.2019182220
Nyman U, Brismar T, Carlqvist J et al (2023) Revised Swedish guidelines on intravenous iodine contrast medium-induced acute kidney injury 2022: A summary. Acta Radiol 64:1859–1864
pubmed: 36749001
doi: 10.1177/02841851231151511
Martens B, Hendriks BMF, Mihl C, Wildberger JE (2020) Tailoring contrast media protocols to varying tube voltages in vascular and parenchymal CT imaging: the 10-to-10 rule. Invest Radiol 55:673–676
pubmed: 32898358
doi: 10.1097/RLI.0000000000000682
Holmquist F, Hansson K, Pasquariello F, Bjork J, Nyman U (2009) Minimizing contrast medium doses to diagnose pulmonary embolism with 80-kVp multidetector computed tomography in azotemic patients. Acta Radiol 50:181–193
pubmed: 19169917
doi: 10.1080/02841850802657269
Kristiansson M, Holmquist F, Nyman U (2010) Ultralow contrast medium doses at CT to diagnose pulmonary embolism in patients with moderate to severe renal impairment. A feasibility study. Eur Radiol 20:1321–1330
pubmed: 20033693
doi: 10.1007/s00330-009-1691-0
Thor D, Brismar TB, Fischer MA (2015) Low tube voltage dual source computed tomography to reduce contrast media doses in adult abdomen examinations: a phantom study. Med Phys 42:5100–5109
pubmed: 26328961
doi: 10.1118/1.4927791
Lehti L, Nyman U, Söderberg M, Björses K, Gottsäter A, Wasselius J (2016) 80-kVp CT angiography for endovascular aneurysm repair follow-up with halved contrast medium dose and preserved diagnostic quality. Acta Radiol 57:279–286
pubmed: 25829479
doi: 10.1177/0284185115577251
Holmquist F, Söderberg M, Nyman U, Fält T, Siemund R, Geijer M (2019) 80-kVp hepatic CT to reduce contrast medium dose in azotemic patients – a feasibility study. Acta Radiol 61:441–449
pubmed: 31378079
doi: 10.1177/0284185119866807
Svensson A, Thor D, Fischer M, Brismar T (2019) Dual source abdominal computed tomography. The effect of reduced X-ray tube voltage and intravenous contrast media dosage in patients with reduced renal function. Acta Radiol 60:293–300
pubmed: 29933715
doi: 10.1177/0284185118783213
Holmquist F (2021) Low kilovoltage computed tomography to reduce contrast medium dose in patients at risk of acute kidney injury. Thesis, Lund University. In. https://portal.research.lu.se/sv/publications/low-kilovoltage-computed-tomography-to-reduce-contrast-medium-dos . Accessed 28 Mar 2023
Radiological Society of the Netherlands. Guideline safe use of contrast media - Part 1 (2017) Availabel at https://www.radiologen.nl/kwaliteit/richtlijnen-veilig-gebruik-van-contrastmiddelen-guidelines-safe-use-contrast-media . Accessed 28 Mar 20232
Nyman U, Aspelin P, Jakobsen J, Björk J (2015) Controversies in contrast material-induced acute kidney injury: propensity score matching of patients with different dose/absolute glomerular filtration rate ratios. Radiology 277:633–637
pubmed: 26599923
doi: 10.1148/radiol.2015151341
Weisbord SD, du Cheryon D (2018) Contrast-associated acute kidney injury is a myth: No. Intensive Care Med 44:107–109
pubmed: 29242968
doi: 10.1007/s00134-017-5015-6
Malmgren L, Öberg C, den Bakker E et al (2023) The complexity of kidney disease and diagnosing it - cystatin C, selective glomerular hypofiltration syndromes and proteome regulation. J Intern Med 293:293–308
pubmed: 36385445
doi: 10.1111/joim.13589
Grubb A, Lindstrom V, Jonsson M et al (2015) Reduction in glomerular pore size is not restricted to pregnant women. Evidence for a new syndrome: “Shrunken pore syndrome.” Scand J Clin Lab Invest 75:333–340
pubmed: 25919022
pmcid: 4487590
doi: 10.3109/00365513.2015.1025427
Åkesson A, Lindström V, Nyman U et al (2020) Shrunken pore syndrome and mortality: a cohort study of patients with measured GFR and known comorbidities. Scand J Clin Lab Invest 80:412–422
pubmed: 32459111
doi: 10.1080/00365513.2020.1759139
SällmanAlmen MS, Björk J, Nyman U et al (2019) Shrunken Pore Syndrome Is Associated With Increased Levels of Atherosclerosis-Promoting Proteins. Kidney Int Rep 4:67–79
doi: 10.1016/j.ekir.2018.09.002
Zhang LW, Luo MQ, Xie XW et al (2023) Shrunken pore syndrome: a new and more powerful phenotype of renal dysfunction than chronic kidney disease for predicting contrast-associated acute kidney injury. J Am Heart Assoc 12(1):e027980. https://doi.org/10.1161/JAHA.122.027980
doi: 10.1161/JAHA.122.027980
pubmed: 36565177