Proteomic Profiling of the Extracellular Vesicle Chaperone in Cancer.


Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2023
Historique:
medline: 7 8 2023
pubmed: 4 8 2023
entrez: 4 8 2023
Statut: ppublish

Résumé

Molecular chaperones are widely distributed intracellular proteins that play essential roles in maintaining proteome function by assisting in the folding of client proteins. Molecular chaperones, such as heat shock proteins (HSPs), are found intracellularly and extracellularly. Extracellular vesicles (EVs), such as exosomes, contain HSPs and horizontally transfer the functional chaperones into various recipient cells. Besides, mass spectrometry has enabled a comprehensive analysis of exosomal and EV proteins, which is useful in basic biomedical research to clinical biomarker search. We have performed deep proteome analysis of EVs, including exosomes, from metastatic tongue and prostate cancers and detected >700 protein types, including cytoplasmic, ER, mitochondrial, small, and large HSPs. Here, we provide protocols for isolating exosomes/EVs and deep proteome analysis to detect the EV chaperone.

Identifiants

pubmed: 37540439
doi: 10.1007/978-1-0716-3342-7_18
doi:

Substances chimiques

Proteome 0
Molecular Chaperones 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

233-249

Informations de copyright

© 2023. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Ellis J (1987) Proteins as molecular chaperones. Nature 328(6129):378–379. https://doi.org/10.1038/328378a0
doi: 10.1038/328378a0 pubmed: 3112578
Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475(7356):324–332. https://doi.org/10.1038/nature10317
doi: 10.1038/nature10317 pubmed: 21776078
Ono K, Eguchi T, Sogawa C, Calderwood SK, Futagawa J, Kasai T et al (2018) HSP-enriched properties of extracellular vesicles involve survival of metastatic oral cancer cells. J Cell Biochem 119(9):7350–7362. https://doi.org/10.1002/jcb.27039
doi: 10.1002/jcb.27039 pubmed: 29768689
Ono K, Sogawa C, Kawai H, Tran MT, Taha EA, Lu Y et al (2020) Triple knockdown of CDC37, HSP90-alpha and HSP90-beta diminishes extracellular vesicles-driven malignancy events and macrophage M2 polarization in oral cancer. J Extracell Vesicles. 9(1):1769373. https://doi.org/10.1080/20013078.2020.1769373
doi: 10.1080/20013078.2020.1769373 pubmed: 33144925 pmcid: 7580842
Eguchi T, Sogawa C, Ono K, Matsumoto M, Tran MT, Okusha Y et al (2020) Cell stress induced stressome release including damaged membrane vesicles and extracellular HSP90 by prostate cancer cells. Cells 9(3):755. https://doi.org/10.3390/cells9030755
doi: 10.3390/cells9030755 pubmed: 32204513 pmcid: 7140686
Taha EA, Ono K, Eguchi T (2019) Roles of extracellular HSPs as biomarkers in immune surveillance and immune evasion. Int J Mol Sci 20(18):4588. https://doi.org/10.3390/ijms20184588
doi: 10.3390/ijms20184588 pubmed: 31533245 pmcid: 6770223
Richter K, Haslbeck M, Buchner J (2010) The heat shock response: life on the verge of death. Mol Cell 40(2):253–266. https://doi.org/10.1016/j.molcel.2010.10.006
doi: 10.1016/j.molcel.2010.10.006 pubmed: 20965420
Finka A, Goloubinoff P (2013) Proteomic data from human cell cultures refine mechanisms of chaperone-mediated protein homeostasis. Cell Stress Chaperones 18(5):591–605. https://doi.org/10.1007/s12192-013-0413-3
doi: 10.1007/s12192-013-0413-3 pubmed: 23430704 pmcid: 3745260
Calderwood SK, Khaleque MA, Sawyer DB, Ciocca DR (2006) Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem Sci 31(3):164–172. https://doi.org/10.1016/j.tibs.2006.01.006
doi: 10.1016/j.tibs.2006.01.006 pubmed: 16483782
Ciocca DR, Calderwood SK (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10(2):86–103. https://doi.org/10.1379/csc-99r.1
doi: 10.1379/csc-99r.1 pubmed: 16038406 pmcid: 1176476
Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM (1994) Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci USA 91(18):8324–8328. https://doi.org/10.1073/pnas.91.18.8324
doi: 10.1073/pnas.91.18.8324 pubmed: 8078881 pmcid: 44598
Schulte TW, Akinaga S, Soga S, Sullivan W, Stensgard B, Toft D et al (1998) Antibiotic radicicol binds to the N-terminal domain of Hsp90 and shares important biologic activities with geldanamycin. Cell Stress Chaperones 3(2):100–108. https://doi.org/10.1379/1466-1268(1998)003<0100:arbttn>2.3.co;2
doi: 10.1379/1466-1268(1998)003<0100:arbttn>2.3.co;2 pubmed: 9672245 pmcid: 312953
Blachere NE, Li Z, Chandawarkar RY, Suto R, Jaikaria NS, Basu S et al (1997) Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. J Exp Med 186(8):1315–1322. https://doi.org/10.1084/jem.186.8.1315
doi: 10.1084/jem.186.8.1315 pubmed: 9334371 pmcid: 2199095
Albakova Z, Siam MKS, Sacitharan PK, Ziganshin RH, Ryazantsev DY, Sapozhnikov AM (2021) Extracellular heat shock proteins and cancer: New perspectives. Transl Oncol 14(2):100995. https://doi.org/10.1016/j.tranon.2020.100995
doi: 10.1016/j.tranon.2020.100995 pubmed: 33338880
Shishkova E, Hebert AS, Coon JJ (2016) Now, more than ever, proteomics needs better chromatography. Cell Syst 3(4):321–324. https://doi.org/10.1016/j.cels.2016.10.007
doi: 10.1016/j.cels.2016.10.007 pubmed: 27788355 pmcid: 5448283
Meier F, Brunner AD, Koch S, Koch H, Lubeck M, Krause M et al (2018) Online parallel accumulation-serial fragmentation (PASEF) with a novel trapped ion mobility mass spectrometer. Mol Cell Proteomics 17(12):2534–2545. https://doi.org/10.1074/mcp.TIR118.000900
doi: 10.1074/mcp.TIR118.000900 pubmed: 30385480 pmcid: 6283298
Kelly RT (2020) Single-cell proteomics: progress and prospects. Mol Cell Proteomics 19(11):1739–1748. https://doi.org/10.1074/mcp.R120.002234
doi: 10.1074/mcp.R120.002234 pubmed: 32847821 pmcid: 7664119
Tian Y, Gong M, Hu Y, Liu H, Zhang W, Zhang M et al (2020) Quality and efficiency assessment of six extracellular vesicle isolation methods by nano-flow cytometry. J Extracell Vesicles 9(1):1697028. https://doi.org/10.1080/20013078.2019.1697028
doi: 10.1080/20013078.2019.1697028 pubmed: 31839906
Hallal S, Russell BP, Wei H, Lee MYT, Toon CW, Sy J et al (2019) Extracellular Vesicles from Neurosurgical Aspirates Identifies Chaperonin Containing TCP1 Subunit 6A as a Potential Glioblastoma Biomarker with Prognostic Significance. Proteomics 19(1–2):e1800157. https://doi.org/10.1002/pmic.201800157
doi: 10.1002/pmic.201800157 pubmed: 30451371
Crescitelli R, Lässer C, Jang SC, Cvjetkovic A, Malmhäll C, Karimi N et al (2020) Subpopulations of extracellular vesicles from human metastatic melanoma tissue identified by quantitative proteomics after optimized isolation. J Extracell Vesicles. 9(1):1722433. https://doi.org/10.1080/20013078.2020.1722433
doi: 10.1080/20013078.2020.1722433 pubmed: 32128073 pmcid: 7034452
Dhondt B, Geeurickx E, Tulkens J, Van Deun J, Vergauwen G, Lippens L et al (2020) Unravelling the proteomic landscape of extracellular vesicles in prostate cancer by density-based fractionation of urine. J Extracell Vesicles. 9(1):1736935. https://doi.org/10.1080/20013078.2020.1736935
doi: 10.1080/20013078.2020.1736935 pubmed: 32284825 pmcid: 7144211
Hoshino A, Kim HS, Bojmar L, Gyan KE, Cioffi M, Hernandez J et al (2020) Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers. Cell 182(4):1044–61.e18. https://doi.org/10.1016/j.cell.2020.07.009
doi: 10.1016/j.cell.2020.07.009 pubmed: 32795414 pmcid: 7522766
Kalluri R, LeBleu VS (2020) The biology, function, and biomedical applications of exosomes. Science 367(6478):eaau6977. https://doi.org/10.1126/science.aau6977
doi: 10.1126/science.aau6977 pubmed: 32029601 pmcid: 7717626
Patel GK, Khan MA, Zubair H, Srivastava SK, Khushman M, Singh S et al (2019) Comparative analysis of exosome isolation methods using culture supernatant for optimum yield, purity and downstream applications. Sci Rep 9(1):5335. https://doi.org/10.1038/s41598-019-41800-2
doi: 10.1038/s41598-019-41800-2 pubmed: 30926864 pmcid: 6441044
Pietrowska M, Wlosowicz A, Gawin M, Widlak P (2019) MS-Based proteomic analysis of serum and plasma: problem of high abundant components and lights and shadows of albumin removal. Adv Exp Med Biol 1073:57–76. https://doi.org/10.1007/978-3-030-12298-0_3
doi: 10.1007/978-3-030-12298-0_3 pubmed: 31236839
Sogawa C, Eguchi T, Namba Y, Okusha Y, Aoyama E, Ohyama K et al (2021) Gel-Free 3D tumoroids with stem cell properties modeling drug resistance to cisplatin and imatinib in metastatic colorectal cancer. Cells 10(2):344. https://doi.org/10.3390/cells10020344
doi: 10.3390/cells10020344 pubmed: 33562088 pmcid: 7914642
Sogawa C, Eguchi T, Tran MT, Ishige M, Trin K, Okusha Y et al (2020) Antiparkinson drug benztropine suppresses tumor growth, circulating tumor cells, and metastasis by acting on SLC6A3/DAT and reducing STAT3. Cancers (Basel) 12(2):1–22
doi: 10.3390/cancers12020523
Sogawa C, Eguchi T, Okusha Y, Ono K, Ohyama K, Iizuka M et al (2019) A reporter system evaluates tumorigenesis, metastasis, beta-catenin/MMP regulation, and druggability. Tissue Eng Part A 25(19–20):1413–1425. https://doi.org/10.1089/ten.TEA.2018.0348
doi: 10.1089/ten.TEA.2018.0348 pubmed: 30734664
Namba Y, Sogawa C, Okusha Y, Kawai H, Itagaki M, Ono K et al (2018) Depletion of lipid efflux pump ABCG1 triggers the intracellular accumulation of extracellular vesicles and reduces aggregation and tumorigenesis of metastatic cancer cells. Front Oncol 8(376):1–16. https://doi.org/10.3389/fonc.2018.00376
doi: 10.3389/fonc.2018.00376
Ono K, Sato K, Nakamura T, Yoshida Y, Murata S, Yoshida K et al (2022) Reproduction of the Antitumor Effect of Cisplatin and Cetuximab Using a Three-dimensional Spheroid Model in Oral Cancer. Int J Med Sci 19(8):1320–1333. https://doi.org/10.7150/ijms.74109
doi: 10.7150/ijms.74109 pubmed: 35928727 pmcid: 9346383
Thery C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R et al (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 7(1):1535750. https://doi.org/10.1080/20013078.2018.1535750
doi: 10.1080/20013078.2018.1535750 pubmed: 30637094 pmcid: 6322352
Yang D, Zhang W, Zhang H, Zhang F, Chen L, Ma L et al (2020) Progress, opportunity, and perspective on exosome isolation - efforts for efficient exosome-based theranostics. Theranostics 10(8):3684–3707. https://doi.org/10.7150/thno.41580
doi: 10.7150/thno.41580 pubmed: 32206116 pmcid: 7069071
Nakai W, Yoshida T, Diez D, Miyatake Y, Nishibu T, Imawaka N et al (2016) A novel affinity-based method for the isolation of highly purified extracellular vesicles. Sci Rep 6:33935. https://doi.org/10.1038/srep33935
doi: 10.1038/srep33935 pubmed: 27659060 pmcid: 5034288
Lima LG, Ham S, Shin H, Chai EPZ, Lek ESH, Lobb RJ et al (2021) Tumor microenvironmental cytokines bound to cancer exosomes determine uptake by cytokine receptor-expressing cells and biodistribution. Nat Commun 12(1):3543. https://doi.org/10.1038/s41467-021-23946-8
doi: 10.1038/s41467-021-23946-8 pubmed: 34112803 pmcid: 8192925
Taha EA, Sogawa C, Okusha Y, Kawai H, Oo MW, Elseoudi A et al (2020) Knockout of MMP3 weakens solid tumor organoids and cancer extracellular vesicles. Cancers (Basel) 12(5):1260. https://doi.org/10.3390/cancers12051260
doi: 10.3390/cancers12051260 pubmed: 32429403
Eguchi T, Ono K, Kawata K, Okamoto K, Calderwood SK. Regulatory roles of HSP90-rich extracellular vesicles. In: Asea AAA, Kaur P, editors. Heat shock protein 90 in human diseases and disorders. Heat shock proteins. Cham: Springer Nature; 2019. p. 3–17
Lu Y, Eguchi T, Sogawa C, Taha EA, Tran MT, Nara T et al (2021) Exosome-based molecular transfer activity of macrophage-like cells involves viability of oral carcinoma cells: size exclusion chromatography and concentration filter method. Cells 10(6):1328. https://doi.org/10.3390/cells10061328
doi: 10.3390/cells10061328 pubmed: 34071980 pmcid: 8228134

Auteurs

Kisho Ono (K)

Department of Oral and Maxillofacial Surgery, Okayama University Hospital, Okayama, Japan.

Takanori Eguchi (T)

Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan. eguchi@okayama-u.ac.jp.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH