Multiorbital Nature of Doped Sr_{2}IrO_{4}.
Journal
Physical review letters
ISSN: 1079-7114
Titre abrégé: Phys Rev Lett
Pays: United States
ID NLM: 0401141
Informations de publication
Date de publication:
21 Jul 2023
21 Jul 2023
Historique:
received:
27
01
2023
accepted:
27
06
2023
medline:
4
8
2023
pubmed:
4
8
2023
entrez:
4
8
2023
Statut:
ppublish
Résumé
The low-energy j_{eff}=1/2 band of Sr_{2}IrO_{4} bears stark resemblances with the x^{2}-y^{2} band of La_{2}CuO_{4}, and yet no superconductivity has been found so far by doping Sr_{2}IrO_{4}. Behind such a behavior could be inherent failures of the j_{eff}=1/2 picture, in particular when electrons or holes are introduced in the IrO_{2} planes. In view of this, here we reanalyze the j_{eff}=1/2 scenario. By using the local-density approximation plus dynamical mean-field theory approach, we show that the form of the effective j_{eff}=1/2 state is surprisingly stable upon doping. This supports the j_{eff}=1/2 picture. We show that, nevertheless, Sr_{2}IrO_{4} remains in essence a multiorbital system: The hybridization with the j_{eff}=3/2 orbitals sizably reduces the Mott gap by enhancing orbital degeneracy, and part of the holes go into the j_{eff}=3/2 channels. These effects cannot be reproduced by a simple effective screened Coulomb repulsion. In the optical conductivity spectra, multiorbital processes involving the j_{eff}=3/2 states contribute both to the Drude peak and to relatively low-energy features.
Identifiants
pubmed: 37540852
doi: 10.1103/PhysRevLett.131.036504
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM