Response of total belowground soil biota in Alhagi sparsifolia monoculture at different soil vertical profiles in desert ecosystem.

Desert management Microbial diversity Soil animals Soil fertility Soil microbiome

Journal

The Science of the total environment
ISSN: 1879-1026
Titre abrégé: Sci Total Environ
Pays: Netherlands
ID NLM: 0330500

Informations de publication

Date de publication:
25 Nov 2023
Historique:
received: 03 07 2023
revised: 01 08 2023
accepted: 01 08 2023
pubmed: 5 8 2023
medline: 5 8 2023
entrez: 4 8 2023
Statut: ppublish

Résumé

The soil organisms are extremely important for the land-based ecosystem. There is a growing interest in studying the variety and composition of the entire underground soil organism community at a large ecological scale. Soil organisms show different patterns in relation to soil physiochemical properties (SPPs) in various ecosystems. However, there is limited knowledge regarding their response to soil vertical profiles (SVPs) in monoculture of Alhagi sparsifolia, which is the primary shrub in the deserts of China, and is well-known for its contributions to sand dune stabilization, traditional Chinese medicine, and forage. Here, we investigated the population dynamics of soil bacteria, fungi, archaea, protists and metazoa across six different SVPs ranging from 0 to 100 cm in monoculture of A. sparsifolia, in its natural desert ecosystem. Our findings indicate that the soil biota communities displayed a declining pattern in the alpha diversity of bacteria, protists, and metazoa with an increase in soil depth. However, the opposite trend was observed for fungi and archaea. The beta diversity of soil biota was significantly affected by SVPs, particularly for metazoa, fungi and protists as revealed by Non-Metric Dimensional Scaling. The most prevalent soil bacterial, fungal, archaeal, protist, and metazoa classes were Actinobacteria, Sordariomycetes, Nitrososphaeria, Filosa-Sarcomonadea, and Nematoda, respectively. The correlation among vertical distribution of the most abundant biotic communities and variations in SPPs exhibited that the variations in total carbon (TC) and total nitrogen (TN) had the most significant influence on bacterial changes, while available potassium (AK) had an impact on fungi. Archaea were affected by TC and pH, protists by the C/N-Ratio and TP, and metazoa by TN, AK, and soil water capacity (SWC). Collectively, our findings provide a new perspective on the vertical distribution and distinct response patterns of soil biota in A. sparsifolia monoculture under natural desert ecosystem of China.

Identifiants

pubmed: 37541502
pii: S0048-9697(23)04652-1
doi: 10.1016/j.scitotenv.2023.166027
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

166027

Informations de copyright

Copyright © 2023 Elsevier B.V. All rights reserved.

Déclaration de conflit d'intérêts

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Auteurs

Waqar Islam (W)

Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address: waqarislam@ms.xjb.ac.cn.

Abd Ullah (A)

Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China; University of Chinese Academy of Sciences, Beijing 100049, China.

Fanjiang Zeng (F)

Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address: zengfj@ms.xjb.ac.cn.

Classifications MeSH