Direct multi-elemental analysis of cerebrospinal fluid samples by LA-ICP-MS employing an aerosol local extraction cryogenic ablation cell.
Aerosol local extraction
CSF
Cryogenic ablation cell
Direct analysis
LA-ICP-MS
Multi-elements
Journal
Analytical and bioanalytical chemistry
ISSN: 1618-2650
Titre abrégé: Anal Bioanal Chem
Pays: Germany
ID NLM: 101134327
Informations de publication
Date de publication:
Oct 2023
Oct 2023
Historique:
received:
06
06
2023
accepted:
19
07
2023
revised:
14
07
2023
pubmed:
5
8
2023
medline:
5
8
2023
entrez:
4
8
2023
Statut:
ppublish
Résumé
A novel method for direct high-throughput analysis of multi-elements in cerebrospinal fluid (CSF) samples by laser ablation inductively coupled plasma mass spectrometry with an aerosol local extraction cryogenic ablation cell (ALEC-LA-ICP-MS) was developed. Microliter-level CSF samples were frozen by a designed cryogenic ablation cell and directly analyzed by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) without time-consuming pretreatment. Compared with the precision obtained at room temperature (20℃), that obtained at low temperature (- 25℃) was significantly improved; the RSDs were reduced from 8.3% (Zn) to 32.6% (Mn) to 2.2% (Pb) to 6.5% (Mn) with six times parallel determination. To meet the analytical requirement of the micro-volume CSF samples, the laminar flow aerosol local extraction strategy was adopted to improve the transmission efficiency of aerosols, and the signal intensity was increased by four times compared with the standard commercial ablation cell. The standard solution with 0.4% bovine serum albumin (BSA) matrix was used as matrix-match external standard, and Rh was added into the samples as internal standard. The limits of detection (LODs) ranged from 0.17 μg·L
Identifiants
pubmed: 37541973
doi: 10.1007/s00216-023-04878-2
pii: 10.1007/s00216-023-04878-2
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
6051-6061Subventions
Organisme : the National Key R&D Program of China
ID : No.2021YFC2903003
Organisme : National Natural Science Foundation of China
ID : No.41873072
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature.
Références
Theiner S, Schoeberl A, Fischer L, Neumayer S, Hann S, Koellensperger G. FI-ICP-TOFMS for quantification of biologically essential trace elements in cerebrospinal fluid – high-throughput at low sample volume. Analyst. 2019;144:4653–60. https://doi.org/10.1039/C9AN00039A .
doi: 10.1039/C9AN00039A
pubmed: 31257367
Yamada S, Kelly E. Cerebrospinal fluid dynamics and the pathophysiology of hydrocephalus: new concepts. Semin Ultrasound CT MRI. 2016;37:84–91. https://doi.org/10.1053/j.sult.2016.01.001 .
doi: 10.1053/j.sult.2016.01.001
Korvela M, Lind A-L, Wetterhall M, Gordh T, Andersson M, Pettersson J. Quantification of 10 elements in human cerebrospinal fluid from chronic pain patients with and without spinal cord stimulation. J Trace Elem Med Biol. 2016;37:1–7. https://doi.org/10.1016/j.jtemb.2016.06.003 .
doi: 10.1016/j.jtemb.2016.06.003
pubmed: 27473826
Gerhardsson L, Lundh T, Minthon L, Londos E. Metal concentrations in plasma and cerebrospinal fluid in patients with Alzheimer’s disease. Dement Geriatr Cogn Disord. 2008;25:508–15. https://doi.org/10.1159/000129365 .
doi: 10.1159/000129365
pubmed: 18463412
Melo TM, Larsen C, White LR, Aasly J, Sjobakk TE, Flaten TP, Sonnewald U, Syversen T. Manganese, copper, and zinc in cerebrospinal fluid from patients with multiple sclerosis. Biol Trace Elem Res. 2003;93:1–8. https://doi.org/10.1385/BTER:93:1-3:1 .
doi: 10.1385/BTER:93:1-3:1
pubmed: 12835484
Cañabate Á, García-Ruiz E, Resano M, Todolí J-L. Cerebrospinal fluid elemental analysis by using a total sample consumption system operated at high temperature adapted to inductively coupled plasma mass spectrometry. J Anal At Spectrom. 2017;32:1916–24. https://doi.org/10.1039/C7JA00210F .
doi: 10.1039/C7JA00210F
Chen Z, Chen B, He M, Hu B. Negative magnetophoresis focusing microchips online-coupled with ICP–MS for high-throughput single-cell analysis. Anal Chem. 2022;94:6649–56. https://doi.org/10.1021/acs.analchem.1c04216 .
doi: 10.1021/acs.analchem.1c04216
pubmed: 35481740
Hu B, Li S, Xiang G, He M, Jiang Z. Recent progress in electrothermal vaporization–inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry. Appl Spectrosc Rev. 2007;42:203–34. https://doi.org/10.1080/05704920601184317 .
doi: 10.1080/05704920601184317
Cañabate Á, García-Ruiz E, Resano M, Todolí J-L. Analysis of whole blood by ICP-MS equipped with a high temperature total sample consumption system. J Anal At Spectrom. 2017;32:78–87. https://doi.org/10.1039/C6JA00374E .
doi: 10.1039/C6JA00374E
Liao X, Luo T, Zhang S, Zhang W, Zong K, Liu Y, Hu Z. Direct and rapid multi-element analysis of wine samples in their natural liquid state by laser ablation ICPMS. J Anal At Spectrom. 2020;35:1071–9. https://doi.org/10.1039/C9JA00404A .
doi: 10.1039/C9JA00404A
Liao X, Hu Z, Luo T, Zhang W, Liu Y, Zong K, Zhou L, Zhang J. Determination of major and trace elements in geological samples by laser ablation solution sampling-inductively coupled plasma mass spectrometry. J Anal At Spectrom. 2019;34:1126–34. https://doi.org/10.1039/C9JA00027E .
doi: 10.1039/C9JA00027E
Becker JS, Matusch A, Wu B. Bioimaging mass spectrometry of trace elements – recent advance and applications of LA-ICP-MS: a review. Anal Chim Acta. 2014;835:1–18. https://doi.org/10.1016/j.aca.2014.04.048 .
doi: 10.1016/j.aca.2014.04.048
pubmed: 24952624
Deng H, Xu H, Zhou J, Tang D, Yang W, Hu M, Zhang Y, Ke Y. Multi-element imaging of urinary stones by LA-ICP-MS with a homogeneous co-precipitation CaC2O4-matrix calibration standard. Anal Bioanal Chem. 2023;415:1751–64. https://doi.org/10.1007/s00216-023-04576-z .
doi: 10.1007/s00216-023-04576-z
pubmed: 36764938
Tanvir EM, Whitfield KM, Ng JC, Shaw PN. Development and validation of an ICP-MS method and its application to determine multiple trace elements in small volumes of whole blood and plasma. J Anal Toxicol. 2021;44:1036–46. https://doi.org/10.1093/jat/bkaa033 .
doi: 10.1093/jat/bkaa033
pubmed: 32232355
Hsieh H-F, Chang W-S, Hsieh Y-K, Wang C-F. Using dried-droplet laser ablation inductively coupled plasma mass spectrometry to quantify multiple elements in whole blood. Anal Chim Acta. 2011;699:6–10. https://doi.org/10.1016/j.aca.2011.05.002 .
doi: 10.1016/j.aca.2011.05.002
pubmed: 21704751
Keerthi K, George SD, Sebastian JG, Warrier AK, Chidangil S, Unnikrishnan VK. Optimization of different sampling approaches in liquid LIBS analysis for environmental applications. J Anal At Spectrom. 2022;37:2625–36. https://doi.org/10.1039/D2JA00202G .
doi: 10.1039/D2JA00202G
Li F, Lei X, Li H, Cui H, Guo W, Jin L, Hu S. Direct multi-elemental analysis of whole blood samples by LA-ICP-MS employing a cryogenic ablation cell. J Anal At Spectrom. 2023;38:90–6. https://doi.org/10.1039/D2JA00282E .
doi: 10.1039/D2JA00282E
Makino Y, Matsuo H, Masuda K, Onozawa S, Nakazato T. Rapid and sensitive determination of leached platinum group elements in organic reaction solution of metal-catalyzed reactions by laser ablation-ICP-MS with spot-drying on paper. J Anal At Spectrom. 2022;37:1787–92. https://doi.org/10.1039/D2JA00141A .
doi: 10.1039/D2JA00141A
Cizdziel JV. Determination of lead in blood by laser ablation ICP-TOF-MS analysis of blood spotted and dried on filter paper: a feasibility study. Anal Bioanal Chem. 2007;388:603–11. https://doi.org/10.1007/s00216-007-1242-y .
doi: 10.1007/s00216-007-1242-y
pubmed: 17396247
Moreda-Piñeiro J, Cantarero-Roldán A, Moreda-Piñeiro A, Cocho JÁ, Bermejo Barrera P. Laser ablation inductively coupled plasma mass spectrometry for multi-elemental determination in dried blood spots. J Anal At Spectrom. 2017;32:1500–7. https://doi.org/10.1039/c7ja00168a .
doi: 10.1039/c7ja00168a
Kumtabtim U, Siripinyanond A, Auray-Blais C, Ntwari A, Becker JS. Analysis of trace metals in single droplet of urine by laser ablation inductively coupled plasma mass spectrometry. Int J Mass Spectrom. 2011;307:174–81. https://doi.org/10.1016/j.ijms.2011.01.030 .
doi: 10.1016/j.ijms.2011.01.030
Chantada-Vázquez MP, Moreda-Piñeiro J, Cantarero-Roldán A, Bermejo-Barrera P, Moreda-Piñeiro A. Development of dried serum spot sampling techniques for the assessment of trace elements in serum samples by LA-ICP-MS. Talanta. 2018;186:169–75. https://doi.org/10.1016/j.talanta.2018.04.049 .
doi: 10.1016/j.talanta.2018.04.049
pubmed: 29784345
Velghe S, Delahaye L, Stove CP. Is the hematocrit still an issue in quantitative dried blood spot analysis? J Pharm Biomed Anal. 2019;163:188–96. https://doi.org/10.1016/j.jpba.2018.10.010 .
doi: 10.1016/j.jpba.2018.10.010
pubmed: 30317075
Freeman JD, Rosman LM, Ratcliff JD, Strickland PT, Graham DR, Silbergeld EK. State of the science in dried blood spots. Clin Chem. 2018;64:656–79. https://doi.org/10.1373/clinchem.2017.275966 .
doi: 10.1373/clinchem.2017.275966
pubmed: 29187355
Resano M, Belarra MA, García-Ruiz E, Aramendía M, Rello L. Dried matrix spots and clinical elemental analysis. Current status, difficulties, and opportunities. TrAC Trends Anal Chem. 2018;99:75–87. https://doi.org/10.1016/j.trac.2017.12.004 .
doi: 10.1016/j.trac.2017.12.004
Meesters RJ, Zhang J, van Huizen NA, Hooff GP, Gruters RA, Luider TM. Dried matrix on paper disks: the next generation DBS microsampling technique for managing the hematocrit effect in DBS analysis. Bioanalysis. 2012;4:2027–35. https://doi.org/10.4155/bio.12.175 .
doi: 10.4155/bio.12.175
pubmed: 22946918
Feldmann J, Kindness A, Ek P. Laser ablation of soft tissue using a cryogenically cooled ablation cell. J Anal At Spectrom. 2002;17:813–8. https://doi.org/10.1039/b201960d .
doi: 10.1039/b201960d
Konz I, Fernández B, Fernández ML, Pereiro R, Sanz-Medel A. Design and evaluation of a new Peltier-cooled laser ablation cell with on-sample temperature control. Anal Chim Acta. 2014;809:88–96. https://doi.org/10.1016/j.aca.2013.11.040 .
doi: 10.1016/j.aca.2013.11.040
pubmed: 24418137
Konz I, Fernández B, Fernández ML, Pereiro R, González-Iglesias H, Coca-Prados M, Sanz-Medel A. Quantitative bioimaging of trace elements in the human lens by LA-ICP-MS. Anal Bioanal Chem. 2014;406:2343–8. https://doi.org/10.1007/s00216-014-7617-y .
doi: 10.1007/s00216-014-7617-y
pubmed: 24500754
Becker JS, Zoriy MV, Dehnhardt M, Pickhardt C, Zilles K. Copper, zinc, phosphorus and sulfur distribution in thin section of rat brain tissues measured by laser ablation inductively coupled plasma mass spectrometry: possibility for small-size tumor analysis. J Anal At Spectrom. 2005;20:912. https://doi.org/10.1039/b504978b .
doi: 10.1039/b504978b
Albrecht M, Derrey IT, Horn I, Schuth S, Weyer S. Quantification of trace element contents in frozen fluid inclusions by UV-fs-LA-ICP-MS analysis. J Anal Spectrom. 2014;29:1034–41. https://doi.org/10.1039/C4JA00015C .
doi: 10.1039/C4JA00015C
Jian W, Albrecht M, Lehmann B, Mao J, Horn I, Li Y, Ye H, Li Z, Fang G, Xue Y. UV-fs-LA-ICP-MS analysis of CO
doi: 10.1155/2018/3692180
Bleiner D, Bogaerts A. Computer simulations of sample chambers for laser ablation–inductively coupled plasma spectrometry. Spectrochim Acta Part B At Spectrosc. 2007;62:155–68. https://doi.org/10.1016/j.sab.2007.02.010 .
doi: 10.1016/j.sab.2007.02.010
Monticelli D, Gurevich EL, Hergenröder R. Design and performances of a cyclonic flux cell for laser ablation. J Anal At Spectrom. 2009;24:328. https://doi.org/10.1039/b807991a .
doi: 10.1039/b807991a
Hu Z, Liu Y, Gao S, Hu S, Dietiker R, Günther D. A local aerosol extraction strategy for the determination of the aerosol composition in laser ablation inductively coupled plasma mass spectrometry. J Anal At Spectrom. 2008;23:1192. https://doi.org/10.1039/b803934h .
doi: 10.1039/b803934h
Luo T, Wang Y, Hu Z, Günther D, Liu Y, Gao S, Li M, Hu S. Further investigation into ICP-induced elemental fractionation in LA-ICP-MS using a local aerosol extraction strategy. J Anal At Spectrom. 2015;30:941–9. https://doi.org/10.1039/C4JA00483C .
doi: 10.1039/C4JA00483C
Bleiner D, Altorfer H. A novel gas inlet system for improved aerosol entrainment in laser ablation inductively coupled plasma mass spectrometry. J Anal At Spectrom. 2005;20:754. https://doi.org/10.1039/b505248c .
doi: 10.1039/b505248c
Liu Y, Hu Z, Gao S, Günther D, Xu J, Gao C, Chen H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem Geol. 2008;257:34–43. https://doi.org/10.1016/j.chemgeo.2008.08.004 .
doi: 10.1016/j.chemgeo.2008.08.004
Longerich HP, Jackson SE, Gunther D. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J Anal At Spectrom. 1997;11:899–904. https://doi.org/10.1039/JA9961100899 .
doi: 10.1039/JA9961100899