Enhanced differentiation of the mouse oli-neu oligodendroglial cell line using optimized culture conditions.
Cell culture
Myelin
Oli-neu
Oligodendrocyte
Journal
BMC research notes
ISSN: 1756-0500
Titre abrégé: BMC Res Notes
Pays: England
ID NLM: 101462768
Informations de publication
Date de publication:
04 Aug 2023
04 Aug 2023
Historique:
received:
16
01
2023
accepted:
17
07
2023
medline:
7
8
2023
pubmed:
5
8
2023
entrez:
4
8
2023
Statut:
epublish
Résumé
Oligodendrocytes (OL) are the glial cell type in the CNS that are responsible for myelin formation. The ability to culture OLs in vitro has provided critical insights into the mechanisms underlying their function. However, primary OL cultures are tedious to obtain, difficult to propagate and are not easily conducive to genetic manipulation. To overcome these obstacles, researchers have generated immortalized OL like cell lines derived from various species. One such cell line is the mouse Oli-neu line which is thought to recapitulate characteristics of OLs in early stages of maturity. They have been extensively utilized in multiple studies as surrogates for OLs, especially in analyzing epigenetic modifications and regulatory pathways in the OL lineage. In this report we present the development of optimized culture media and growth conditions that greatly facilitate the differentiation of Oli-neu cells. Oli-neu cells differentiated using these new protocols exhibit a higher expression of myelin related genes and increased branching, both of which are defining characteristics of mature OLs, when compared to previous culture protocols. We envision that these new culture conditions will greatly facilitate the use of Oli-neu cells and enhance their ability to recapitulate the salient features of primary OLs.
Identifiants
pubmed: 37542275
doi: 10.1186/s13104-023-06432-w
pii: 10.1186/s13104-023-06432-w
pmc: PMC10401818
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
161Subventions
Organisme : NINDS NIH HHS
ID : R01 NS126193
Pays : United States
Organisme : NINDS NIH HHS
ID : R21 NS131906
Pays : United States
Organisme : NINDS NIH HHS
ID : R21 NS104384
Pays : United States
Organisme : NINDS NIH HHS
ID : R33 NS106087
Pays : United States
Organisme : NIH HHS
ID : R01NS095884, R33NS104384, R33NS106087, R01NS126193
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS095884
Pays : United States
Organisme : NINDS NIH HHS
ID : R33 NS104384
Pays : United States
Informations de copyright
© 2023. BioMed Central Ltd., part of Springer Nature.
Références
Snaidero N, Simons M. Myelination at a glance. J Cell Sci. 2014;127(Pt 14):2999–3004.
doi: 10.1242/jcs.151043
pubmed: 25024457
Verkhratsky A, Butt A. Glial physiology and pathophysiology. John Wiley & Sons, Ltd; 2013. pp. 245–320.
Snaidero N, Mobius W, Czopka T, Hekking LH, Mathisen C, Verkleij D, et al. Myelin membrane wrapping of CNS axons by PI(3,4,5)P3-dependent polarized growth at the inner tongue. Cell. 2014;156(1–2):277–90.
doi: 10.1016/j.cell.2013.11.044
pubmed: 24439382
pmcid: 4862569
Goldman SA, Kuypers NJ. How to make an oligodendrocyte. Development. 2015;142(23):3983–95.
doi: 10.1242/dev.126409
pubmed: 26628089
pmcid: 4712837
Rowitch DH, Kriegstein AR. Developmental genetics of vertebrate glial-cell specification. Nature. 2010;468(7321):214–22.
doi: 10.1038/nature09611
pubmed: 21068830
Emery B, Lu QR. Transcriptional and epigenetic regulation of Oligodendrocyte Development and Myelination in the Central Nervous System. Cold Spring Harb Perspect Biol. 2015;7(9):a020461.
doi: 10.1101/cshperspect.a020461
pubmed: 26134004
pmcid: 4563712
Barateiro A, Brites D, Fernandes A. Oligodendrocyte Development and Myelination in Neurodevelopment: Molecular Mechanisms in Health and Disease. Curr Pharm Des. 2016;22(6):656–79.
doi: 10.2174/1381612822666151204000636
pubmed: 26635271
Zhang SC. Defining glial cells during CNS development. Nat Rev Neurosci. 2001;2(11):840–3.
doi: 10.1038/35097593
pubmed: 11715061
Emery B, Dugas JC. Purification of oligodendrocyte lineage cells from mouse cortices by immunopanning. Cold Spring Harb Protoc. 2013;2013(9):854–68.
doi: 10.1101/pdb.prot073973
pubmed: 24003195
Hyrien O, Mayer-Proschel M, Noble M, Yakovlev A. Estimating the life-span of oligodendrocytes from clonal data on their development in cell culture. Math Biosci. 2005;193(2):255–74.
doi: 10.1016/j.mbs.2004.07.003
pubmed: 15748733
Krueger WH, Madison DL, Pfeiffer SE. Transient transfection of oligodendrocyte progenitors by electroporation. Neurochem Res. 1998;23(3):421–6.
doi: 10.1023/A:1022426021173
pubmed: 9482256
Gresch O, Altrogge L. Transfection of difficult-to-transfect primary mammalian cells. Methods Mol Biol. 2012;801:65–74.
doi: 10.1007/978-1-61779-352-3_5
pubmed: 21987247
Pereira GB, Dobretsova A, Hamdan H, Wight PA. Expression of myelin genes: comparative analysis of Oli-neu and N20.1 oligodendroglial cell lines. J Neurosci Res. 2011;89(7):1070–8.
doi: 10.1002/jnr.22625
pubmed: 21472765
pmcid: 3088771
Jung M, Kramer E, Grzenkowski M, Tang K, Blakemore W, Aguzzi A, et al. Lines of murine oligodendroglial precursor cells immortalized by an activated neu tyrosine kinase show distinct degrees of interaction with axons in vitro and in vivo. Eur J Neurosci. 1995;7(6):1245–65.
doi: 10.1111/j.1460-9568.1995.tb01115.x
pubmed: 7582098
Kim D, An H, Shearer RS, Sharif M, Fan C, Choi JO, et al. A principled strategy for mapping enhancers to genes. Sci Rep. 2019;9(1):11043.
doi: 10.1038/s41598-019-47521-w
pubmed: 31363138
pmcid: 6667464
Curiel J, Rodriguez Bey G, Takanohashi A, Bugiani M, Fu X, Wolf NI, et al. TUBB4A mutations result in specific neuronal and oligodendrocytic defects that closely match clinically distinct phenotypes. Hum Mol Genet. 2017;26(22):4506–18.
doi: 10.1093/hmg/ddx338
pubmed: 28973395
pmcid: 7462055
do Rosario MC, Bey GR, Nmezi B, Liu F, Oranburg T, Cohen ASA et al. Variants in the zinc transporter TMEM163 cause a hypomyelinating leukodystrophy. Brain. 2022.
Sohl G, Hombach S, Degen J, Odermatt B. The oligodendroglial precursor cell line Oli-neu represents a cell culture system to examine functional expression of the mouse gap junction gene connexin29 (Cx29). Front Pharmacol. 2013;4:83.
doi: 10.3389/fphar.2013.00083
pubmed: 23825458
pmcid: 3695394
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402–8.
doi: 10.1006/meth.2001.1262
pubmed: 11846609
Myster DL, Duronio RJ. To differentiate or not to differentiate? Curr Biol. 2000;10(8):R302–4.
doi: 10.1016/S0960-9822(00)00435-8
pubmed: 10801410