Blood transcriptomics mirror regulatory mechanisms during hibernation-a comparative analysis of the Djungarian hamster with other mammalian species.
Hibernation
Ingenuity pathway analysis
Torpor
Transcriptomics
Journal
Pflugers Archiv : European journal of physiology
ISSN: 1432-2013
Titre abrégé: Pflugers Arch
Pays: Germany
ID NLM: 0154720
Informations de publication
Date de publication:
10 2023
10 2023
Historique:
received:
30
03
2023
accepted:
11
07
2023
revised:
13
06
2023
medline:
14
9
2023
pubmed:
6
8
2023
entrez:
5
8
2023
Statut:
ppublish
Résumé
Hibernation enables many species of the mammalian kingdom to overcome periods of harsh environmental conditions. During this physically inactive state metabolic rate and body temperature are drastically downregulated, thereby reducing energy requirements (torpor) also over shorter time periods. Since blood cells reflect the organism´s current condition, it was suggested that transcriptomic alterations in blood cells mirror the torpor-associated physiological state. Transcriptomics on blood cells of torpid and non-torpid Djungarian hamsters and QIAGEN Ingenuity Pathway Analysis (IPA) revealed key target molecules (TM
Identifiants
pubmed: 37542567
doi: 10.1007/s00424-023-02842-8
pii: 10.1007/s00424-023-02842-8
pmc: PMC10499953
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1149-1160Informations de copyright
© 2023. The Author(s).
Références
Al-Attar R, Storey KB (2020) Suspended in time: Molecular responses to hibernation also promote longevity. Exp Gerontol 134:110889
pubmed: 32114078
doi: 10.1016/j.exger.2020.110889
Betz MJ, Enerbäck S (2015) Human Brown Adipose Tissue: What We Have Learned So Far. Diabetes 64(7):2352–2360
pubmed: 26050667
doi: 10.2337/db15-0146
Biggar KK et al (2015) Modulation of gene expression in key survival pathways during daily torpor in the gray mouse lemur, Microcebus murinus. Genom Proteom Bioinform 13(2):111–118
pubmed: 26093281
pmcid: 4511780
doi: 10.1016/j.gpb.2015.03.001
Bjerkvig CK et al (2016) "Blood failure" time to view blood as an organ: how oxygen debt contributes to blood failure and its implications for remote damage control resuscitation. Transfusion 56(Suppl 2):S182–S189
pubmed: 27100755
doi: 10.1111/trf.13500
Bouma HR, Carey HV, Kroese FG (2010) Hibernation: the immune system at rest? J Leukoc Biol 88(4):619–624
pubmed: 20519639
doi: 10.1189/jlb.0310174
Bouma HR et al (2011) Low body temperature governs the decline of circulating lymphocytes during hibernation through sphingosine-1-phosphate. Proc Natl Acad Sci U S A 108(5):2052–2057
pubmed: 21245336
pmcid: 3033260
doi: 10.1073/pnas.1008823108
Bouma HR et al (2012) Induction of torpor: mimicking natural metabolic suppression for biomedical applications. J Cell Physiol 227(4):1285–1290
pubmed: 21618525
doi: 10.1002/jcp.22850
Cerri M et al (2016) Hibernation for space travel: Impact on radioprotection. Life Sci Space Res 11:1–9
doi: 10.1016/j.lssr.2016.09.001
Choukèr A et al (2019) Hibernating astronauts-science or fiction? Pflugers Arch 471(6):819–828
pubmed: 30569200
doi: 10.1007/s00424-018-2244-7
Choukér A et al (2021) European space agency's hibernation (torpor) strategy for deep space missions: linking biology to engineering. Neurosci Biobehav Rev 131:618–626
pubmed: 34606822
doi: 10.1016/j.neubiorev.2021.09.054
Cooper ST et al (2012) The hibernating 13-lined ground squirrel as a model organism for potential cold storage of platelets. Am J Physiol Regul Integr Comp Physiol 302(10):R1202–R1208
pubmed: 22492817
pmcid: 3362150
doi: 10.1152/ajpregu.00018.2012
Cubuk C et al (2017) Transcriptome analysis of hypothalamic gene expression during daily torpor in djungarian hamsters (Phodopus sungorus). Front Neurosci 11:122
pubmed: 28348515
pmcid: 5346580
doi: 10.3389/fnins.2017.00122
Dausmann KH, Glos J, Heldmaier G (2009) Energetics of tropical hibernation. J Comp Physiol B 179(3):345–357
pubmed: 19048262
doi: 10.1007/s00360-008-0318-0
Dausmann KH et al (2005) Hibernation in the tropics: lessons from a primate. J Comp Physiol B 175(3):147–155
pubmed: 15682314
doi: 10.1007/s00360-004-0470-0
de Veij Mestdagh CF et al (2021) Torpor enhances synaptic strength and restores memory performance in a mouse model of Alzheimer's disease. Sci Rep 11(1):15486
pubmed: 34326412
pmcid: 8322095
doi: 10.1038/s41598-021-94992-x
Decoursey G, Decoursey PJ (1964) Adaptive aspects of activity rhythms in bats. Biol Bull 126(1):14–27
doi: 10.2307/1539413
Dias IB, Bouma HR, Henning RH (2021) Unraveling the big sleep: molecular aspects of stem cell dormancy and hibernation. Front Physiol 12:624950
pubmed: 33867999
pmcid: 8047423
doi: 10.3389/fphys.2021.624950
Diedrich V et al (2020) What can seasonal models teach us about energy balance? J Endocrinol 244(2):R17–r32
pubmed: 31972543
doi: 10.1530/JOE-19-0502
Faherty SL et al (2016) Gene expression profiling in the hibernating primate, Cheirogaleus medius. Genome Biol Evol 8(8):2413–2426
pubmed: 27412611
pmcid: 5010898
doi: 10.1093/gbe/evw163
Fairweather D (2007) Regulating inflammation in the heart. Int J Biomed Sci 3(1):9–13
pubmed: 23675015
pmcid: 3614623
Fenton, MB (1983) Energy and survival. In just bats. University of Toronto Press, p 69–80. http://www.jstor.org/stable/10.3138/j.ctt1287pgc.10
Freeman DA et al (2004) Reduced leptin concentrations are permissive for display of torpor in Siberian hamsters. Am J Physiol Regul Integr Comp Physiol 287(1):R97–r103
pubmed: 15191926
doi: 10.1152/ajpregu.00716.2003
Friedrich AU et al (2017) Comparative coagulation studies in hibernating and summer-active black bears (Ursus americanus). Thromb Res 158:16–18
pubmed: 28783512
doi: 10.1016/j.thromres.2017.07.034
Fröbert O et al (2020) The brown bear as a translational model for sedentary lifestyle-related diseases. J Intern Med 287(3):263–270
pubmed: 31595572
doi: 10.1111/joim.12983
Fu R et al (2020) Dynamic RNA regulation in the brain underlies physiological plasticity in a hibernating mammal. Front Physiol 11:624677
pubmed: 33536943
doi: 10.3389/fphys.2020.624677
Geiser F, Ruf T (1995) Hibernation versus daily torpor in mammals and birds: physiological variables and classification of torpor patterns. Physiol Zool 68(6):935–66
George DB et al (2011) Host and viral ecology determine bat rabies seasonality and maintenance. Proc Natl Acad Sci U S A 108(25):10208–10213
pubmed: 21646516
pmcid: 3121824
doi: 10.1073/pnas.1010875108
Gerow CM et al (2019) Arousal from hibernation and reactivation of Eptesicus fuscus gammaherpesvirus (EfHV) in big brown bats. Transbound Emerg Dis 66(2):1054–1062
pubmed: 30554475
doi: 10.1111/tbed.13102
Gillen AE et al (2021) Liver transcriptome dynamics during hibernation are shaped by a shifting balance between transcription and RNA stability. Front Physiol 12:662132
pubmed: 34093224
pmcid: 8176218
doi: 10.3389/fphys.2021.662132
Givre L et al (2021) Cardiomyocyte protection by hibernating brown bear serum: toward the identification of new protective molecules against myocardial infarction. Front Cardiovasc Med 8:687501
pubmed: 34336951
pmcid: 8322573
doi: 10.3389/fcvm.2021.687501
Hampton M et al (2011) Deep sequencing the transcriptome reveals seasonal adaptive mechanisms in a hibernating mammal. PloS One 6(10):e27021
pubmed: 22046435
pmcid: 3203946
doi: 10.1371/journal.pone.0027021
Harlow HJ et al (2001) Muscle strength in overwintering bears. Nature 409(6823):997
pubmed: 11234052
doi: 10.1038/35059165
Haugg E, Herwig A, Diedrich V (2021) Body temperature and activity adaptation of short photoperiod-exposed djungarian hamsters (Phodopus sungorus): timing, traits, and torpor. Front Physiol 12:626779
pubmed: 34305626
pmcid: 8294097
doi: 10.3389/fphys.2021.626779
Haugg E et al (2022) Comparative transcriptomics of the Djungarian hamster hypothalamus during short photoperiod acclimation and spontaneous torpor. FEBS Open Bio 12(2):443–459
pubmed: 34894101
doi: 10.1002/2211-5463.13350
Heldmaier G (2011) Life on low flame in hibernation. Science 331(6019):866–867
pubmed: 21330523
doi: 10.1126/science.1203192
Herwig A et al (2006) Daily torpor alters multiple gene expression in the suprachiasmatic nucleus and pineal gland of the Djungarian hamster (Phodopus sungorus). Chronobiol Int 23(1-2):269–276
pubmed: 16687300
doi: 10.1080/07420520500522424
Hitrec T et al (2019) Neural control of fasting-induced torpor in mice. Sci Rep 9(1):15462
pubmed: 31664081
pmcid: 6820542
doi: 10.1038/s41598-019-51841-2
Hooper N, Armstrong TJ (2022) Hemorrhagic shock. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing 2023 Jan. Available from: https://www.ncbi.nlm.nih.gov/books/NBK470382/
Huber N et al (2021) Dynamic function and composition shift in circulating innate immune cells in hibernating garden dormice. Front Physiol 12:620614
pubmed: 33746769
pmcid: 7970003
doi: 10.3389/fphys.2021.620614
Jani A et al (2013) Renal adaptation during hibernation. Am J Physiol Renal Physiol 305(11):F1521–F1532
pubmed: 24049148
pmcid: 4073900
doi: 10.1152/ajprenal.00675.2012
Kandefer-Szerszeń M (1988) Interferon production in leukocytes of spotted sousliks--effect of hibernation on the interferon response in vitro. J Interferon Res 8(1):95–103
pubmed: 2452852
doi: 10.1089/jir.1988.8.95
Krämer A et al (2014) Causal analysis approaches in ingenuity pathway analysis. Bioinformatics 30(4):523–530
pubmed: 24336805
doi: 10.1093/bioinformatics/btt703
Kurtz CC et al (2021) How the gut and liver hibernate. Comp Biochem Physiol A Mol Integr Physiol 253:110875
pubmed: 33348019
doi: 10.1016/j.cbpa.2020.110875
Lanaspa MA et al (2015) Opposing activity changes in AMP deaminase and AMP-activated protein kinase in the hibernating ground squirrel. PloS One 10(4):e0123509
pubmed: 25856396
pmcid: 4391924
doi: 10.1371/journal.pone.0123509
McGee ME et al (2008) Decreased bone turnover with balanced resorption and formation prevent cortical bone loss during disuse (hibernation) in grizzly bears (Ursus arctos horribilis). Bone 42(2):396–404
pubmed: 18037367
doi: 10.1016/j.bone.2007.10.010
Mizushima N, Klionsky DJ (2007) Protein turnover via autophagy: implications for metabolism. Annu Rev Nutr 27:19–40
pubmed: 17311494
doi: 10.1146/annurev.nutr.27.061406.093749
Nespolo RF et al (2021) Heterothermy as the norm, homeothermy as the exception: variable torpor patterns in the South American Marsupial Monito del Monte (Dromiciops gliroides). Front Physiol 12:682394
pubmed: 34322034
pmcid: 8311349
doi: 10.3389/fphys.2021.682394
Novoselova EG et al (2000) Production of tumor necrosis factor in cells of hibernating ground squirrels Citellus undulatus during annual cycle. Life Sci 67(9):1073–1080
pubmed: 10954040
doi: 10.1016/S0024-3205(00)00698-6
Nowack J et al (2020) Variable climates lead to varying phenotypes: “Weird” Mammalian torpor and lessons from non-holarctic species. Front Ecol Evol 8
Otis JP et al (2017) Hibernation reduces cellular damage caused by warm hepatic ischemia-reperfusion in ground squirrels. J Comp Physiol B 187(4):639–648
pubmed: 28144740
doi: 10.1007/s00360-017-1056-y
Perry RW (2013) A review of factors affecting cave climates for hibernating bats in temperate North America. Environ Rev 21:28–39
doi: 10.1139/er-2012-0042
Piscitiello E et al (2021) Acclimation of intestinal morphology and function in Djungarian hamsters (Phodopus sungorus) related to seasonal and acute energy balance. J Exp Biol 224(4)
Pu W et al (2018) Genetic Targeting of Organ-Specific Blood Vessels. Circ Res 123(1):86–99
pubmed: 29764841
pmcid: 6015762
doi: 10.1161/CIRCRESAHA.118.312981
Romero MF (2004) In the beginning, there was the cell: cellular homeostasis. Adv Physiol Educ 28(1-4):135–138
pubmed: 15545341
doi: 10.1152/advan.00048.2004
Ruf T, Geiser F (2015) Daily torpor and hibernation in birds and mammals. Biol Rev Camb Philos Soc 90(3):891–926
pubmed: 25123049
doi: 10.1111/brv.12137
Saleem R, Al-Attar R, Storey KB (2021) The activation of prosurvival pathways in Myotis lucifugus during torpor. Physiol Biochem Zool 94(3):180–187
pubmed: 33835909
doi: 10.1086/714219
Schmid J (1998) Tree holes used for resting by gray mouse lemurs (Microcebus murinus) in Madagascar: insulation capacities and energetic consequences. International Journal of Primatology 19(5):797–809
doi: 10.1023/A:1020389228665
Schmid J (2000) Daily torpor in the gray mouse lemur (Microcebus murinus) in Madagascar: energetic consequences and biological significance. Oecologia 123(2):175–183
pubmed: 28308721
doi: 10.1007/s004420051003
Schwartz C, Hampton M, Andrews MT (2013) Seasonal and regional differences in gene expression in the brain of a hibernating mammal. PloS One 8(3):e58427
pubmed: 23526982
pmcid: 3603966
doi: 10.1371/journal.pone.0058427
Steinlechner S (1998) Djungarian hamster and/or Siberian hamster: who is who? Eur Pin Soc News 38:7–11
Storey KB, Heldmaier G, Rider MR (2010) Mammalian hibernation: physiology, cell signaling, and gene controls on metabolic rate depression. In: Lubzens E, Cerda J, Clark M (eds) Dormancy and Resistance in Harsh Environments. Springer, Berlin Heidelberg
Tinganelli W et al (2019) Hibernation and radioprotection: gene expression in the liver and testicle of rats irradiated under synthetic torpor. Int J Mol Sci 20(2):352
pubmed: 30654467
pmcid: 6359347
doi: 10.3390/ijms20020352
Tøien Ø et al (2011) Hibernation in black bears: independence of metabolic suppression from body temperature. Science 331(6019):906–909
pubmed: 21330544
doi: 10.1126/science.1199435
van Breukelen F, Martin S (2002) Reversible depression of transcription during hibernation. J Comp Physiol B 172(5):355–361
pubmed: 12122451
doi: 10.1007/s00360-002-0256-1
Wiersma M et al (2018) Torpor-arousal cycles in Syrian hamster heart are associated with transient activation of the protein quality control system. Comp Biochem Physiol B Biochem Mol Biol 223:23–28
pubmed: 29894736
doi: 10.1016/j.cbpb.2018.06.001
Wu CW, Biggar KK, Storey KB (2013) Biochemical adaptations of mammalian hibernation: exploring squirrels as a perspective model for naturally induced reversible insulin resistance. Braz J Med Biol Res 46(1):1–13
pubmed: 23314346
pmcid: 3854349
doi: 10.1590/1414-431X20122388
Wu CW, Storey KB (2012) Pattern of cellular quiescence over the hibernation cycle in liver of thirteen-lined ground squirrels. Cell Cycle 11(9):1714–1726
pubmed: 22510572
doi: 10.4161/cc.19799
Xie LH, Gwathmey JK, Zhao Z (2021) Cardiac adaptation and cardioprotection against arrhythmias and ischemia-reperfusion injury in mammalian hibernators. Pflugers Arch 473(3):407–416
pubmed: 33394082
pmcid: 9549482
doi: 10.1007/s00424-020-02511-0
Xu Y et al (2013) Molecular signatures of mammalian hibernation: comparisons with alternative phenotypes. BMC Genomics 14:567
pubmed: 23957789
pmcid: 3751779
doi: 10.1186/1471-2164-14-567
Zimmermann, M. and B. Snow (2012) An Introduction to Nutrition, Chapter 7: Nutrients Important to Fluid and Electrolyte Balance