Shedding Novel Photophysical Insights Toward Discriminative Detection of Three Toxic Heavy Metal Ions and a hazard class 1 nitro-explosive By Using a Simple AIEE Active Luminogen.
Aggregation-induced emission enhancement
Chromo-fluorogenic sensor
Fluorescence anisotropy
Heavy metal ions
Picric acid sensor
Time-resolved fluorescence spectroscopy
Journal
Journal of fluorescence
ISSN: 1573-4994
Titre abrégé: J Fluoresc
Pays: Netherlands
ID NLM: 9201341
Informations de publication
Date de publication:
05 Aug 2023
05 Aug 2023
Historique:
received:
29
06
2023
accepted:
27
07
2023
medline:
6
8
2023
pubmed:
6
8
2023
entrez:
5
8
2023
Statut:
aheadofprint
Résumé
In this work, we introduced a simple aggregation-induced emission enhancement (AIEE) sensor (PHCS) which can selectively detect and discriminate three environmentally and biologically imperative heavy metal ions (Cu
Identifiants
pubmed: 37542589
doi: 10.1007/s10895-023-03378-x
pii: 10.1007/s10895-023-03378-x
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Chen Y, Zhang W, Cai Y, Kwok RTK, Hu Y, Lam JWY, Gu X, He Z, Zhao Z, Zheng X, Chen B, Gui C, Tang BZ (2017) AIEgens for dark through-bond energy transfer: design, synthesis, theoretical study and application in ratiometric Hg
pubmed: 28451323
doi: 10.1039/C6SC04206F
Diwan U, Kumar V, Mishra RK, Rana NK, Koch B, Singh MK, Upadhyay KK (2016) A pyrene-benzthiazolium conjugate portraying aggregation induced emission, a ratiometric detection and live cell visualization of HSO
pubmed: 27251947
doi: 10.1016/j.aca.2016.04.057
Pasparakis M, Vandenabeele P (2015) Necroptosis and its role in inflammation. Nature 517:311–320
pubmed: 25592536
doi: 10.1038/nature14191
Liu Y, Tang Y, Barashkov NN, Irgibaeva IS, Lam JWY, Hu R, Birimzhanova D, Yu Y, Tang BZ (2010) Fluorescent chemosensor for detection and quantitation of carbon dioxide gas. J Am Chem Soc 132:13951–13953
pubmed: 20853831
doi: 10.1021/ja103947j
Liang G, Ren F, Gao H, Wu Q, Zhu F, Tang BZ (2016) Bioinspired fluorescent nanosheets for rapid and sensitive detection of organic pollutants in water. ACS Sen 1:1272–1278
doi: 10.1021/acssensors.6b00530
Ma X, Sun R, Cheng J, Liu J, Gou F, Xiang H, Zhou X (2016) Fluorescence aggregation-caused quenching versus aggregation-induced emission: A visual teaching technology for undergraduate chemistry students. J Chem Educ 93:345–350
doi: 10.1021/acs.jchemed.5b00483
Birks JB (1970) Photophysics of Aromatic Molecules, edn. Wiley, London
Shyamal M, Mazumdar P, Maity S, Samanta S, Sahoo GP, Misra A (2016) Highly selective turn-on fluorogenic chemosensor for robust quantification of Zn(II) based on aggregation induced emission enhancement feature. ACS Sen 1:739–747
doi: 10.1021/acssensors.6b00289
Khandare DG, Joshi H, Banerjee M, Majik MS, Chatterjee A (2015) Fluorescence turn-on chemosensor for the detection of dissolved CO
pubmed: 26458016
doi: 10.1021/acs.analchem.5b02339
Zhang JF, Zhou Y, Yoon J, Kim JS (2011) Recent progress in fluorescent and colorimetric chemosensors for detection of precious metal ions (silver, gold and platinum ions). Chem Soc Rev 40:3416–3429
pubmed: 21491036
doi: 10.1039/c1cs15028f
Hong Y, Lam JWY, Tang BZ (2009) Aggregation-induced emission: phenomenon, mechanism and applications. Chem Commun 1:4332–4353
doi: 10.1039/b904665h
Mei J, Hong Y, Lam JWY, Qin A, Tang Y, Tang BZ (2014) Aggregation-induced emission: The whole is more brilliant than the parts. Adv Mater 26:5429–5479
pubmed: 24975272
doi: 10.1002/adma.201401356
Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ (2015) Aggregation-induced emission: Together we shine, united we soar! Chem Rev 115:11718–11940
pubmed: 26492387
doi: 10.1021/acs.chemrev.5b00263
Liang J, Tang BZ, Liu B (2015) Specific light-up bioprobes based on AIEgen conjugates. Chem Soc Rev 44:2798–2811
pubmed: 25686761
doi: 10.1039/C4CS00444B
Qian X, Xu Z (2015) Fluorescence imaging of metal ions implicated in diseases. Chem Soc Rev 44:4487–4493
pubmed: 25556818
doi: 10.1039/C4CS00292J
Klotz L-O, Kröncke K-D, Buchczyk DP, Sies H (2003) Role of copper, zinc, selenium and tellurium in the cellular defense against oxidative and nitrosative stress. J Nutr 133:1448S-1451S
pubmed: 12730440
doi: 10.1093/jn/133.5.1448S
Malvankar PL, Shinde VM (1991) Ion-pair extraction and determination of copper(II) and zinc(II) in environmental and pharmaceutical samples. Analyst 116:1081–1084
pubmed: 1801605
doi: 10.1039/an9911601081
Tapiero H, Townsend DM, Tew KD (2003) Trace elements in human physiology and pathology. Copper Biomed Pharmacother 57:386–398
pubmed: 14652164
doi: 10.1016/S0753-3322(03)00012-X
Festa RA, Thiele DJ (2011) Copper: an essential metal in biology. Curr Biol 21:R877–R883
pubmed: 22075424
pmcid: 3718004
doi: 10.1016/j.cub.2011.09.040
Karaoglu K, Yilmaz F, Menteşe E (2017) A new fluorescent “turn-off” coumarin-based chemosensor: Synthesis, structure and Cu-selective fluorescent sensing in water samples. J Fluoresc 27:1293–1298
pubmed: 28283898
doi: 10.1007/s10895-017-2062-x
Zatta P, Frank A (2007) Copper deficiency and neurological disorders in man and animals. Brain Res Rev 54:19–33
pubmed: 17270275
doi: 10.1016/j.brainresrev.2006.10.001
Gaetke LM, Chow CK (2003) Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189:147–163
pubmed: 12821289
doi: 10.1016/S0300-483X(03)00159-8
Waggoner DJ, Bartnikas TB, Gitlin JD (1999) The role of copper in neurodegenerative disease. Neurobiol Dis 6:221–230
pubmed: 10448050
doi: 10.1006/nbdi.1999.0250
Gaggelli E, Kozlowski H, Valensin D, Valensin G (2006) Copper homeostasis and neurodegenerative disorders (alzheimer’s, prion, and parkinson’s diseases and amyotrophic lateral sclerosis). Chem Rev 106:1995–2044
pubmed: 16771441
doi: 10.1021/cr040410w
Helal A, Rashid MHO, Choi C-H, Kim H-S (2011) Chromogenic and fluorogenic sensing of Cu
doi: 10.1016/j.tet.2011.01.093
Walker KW, Bradshaw RA (1998) Yeast methionine aminopeptidase I can utilize either Zn
pubmed: 9865965
pmcid: 2143902
doi: 10.1002/pro.5560071224
Gharehbaghi M, Shemirani F, Farahani MD (2009) Cold-induced aggregation microextraction based on ionic liquids and fiber optic-linear array detection spectrophotometry of cobalt in water samples. J Hazard Mater 165:1049–1055
pubmed: 19095354
doi: 10.1016/j.jhazmat.2008.10.128
Léonard A, Lauwerys R (1990) Mutagenicity, carcinogenicity and teratogenicity of cobalt metal and cobalt compounds. Mutat Res 239:17–27
pubmed: 2195331
doi: 10.1016/0165-1110(90)90029-B
Jüllig M, Chen X, Hickey AJ, Crossman DJ, Xu A, Wang Y, Greenwood DR, Choong YS, Schönberger SJ, Middleditch MJ, Phillips ARJ, Cooper GJS (2007) Reversal of diabetes-evoked changes in mitochondrial protein expression of cardiac left ventricle by treatment with a copper(II)-selective chelator. Proteom-Clin Appl 1:387–399
doi: 10.1002/prca.200600770
Seldén AI, Norberg C, Karlson-Stiber C, Hellström-Lindberg E (2007) Cobalt release from glazed earthenware: Observations in a case of lead poisoning. Environ Toxicol Pharmacol 23:129–131
pubmed: 21783747
doi: 10.1016/j.etap.2006.07.002
Weiss B (2007) Why methylmercury remains a conundrum 50 years after Minamata. Toxicol Sci 97:223–225
pubmed: 20853528
doi: 10.1093/toxsci/kfm047
Amin-Zaki L, Elhassani S, Majeed MA, Clarkson TW, Doherty RA, Greenwood M (1974) Intra-uterine methylmercury poisoning in Iraq. Pediatrics 54:587–595
pubmed: 4480317
doi: 10.1542/peds.54.5.587
Natale FD, Lancia A, Molino A, Natale MD, Karatza D, Musmarra D (2006) Capture of mercury ions by natural and industrial materials. J Hazard Mater 132:220–225
pubmed: 16271826
doi: 10.1016/j.jhazmat.2005.09.046
Berglund A, Pohl L, Olsson S, Bergman M (1988) Determination of the rate of release of intra-oral mercury vapor from amalgam. J Dent Res 67:1235–1242
pubmed: 3166008
doi: 10.1177/00220345880670091701
Nendza M, Herbst T, Kussatz C, Gies A (1997) Potential for secondary poisoning and biomagnification in marine organisms. Chemosphere 35:1875–1885
pubmed: 9353909
doi: 10.1016/S0045-6535(97)00239-7
Wang F, Nam S-W, Guo Z, Park S, Yoon J (2012) A new rhodamine derivative bearing benzothiazole and thiocarbonyl moieties as a highly selective fluorescent and colorimetric chemodosimeter for Hg
doi: 10.1016/j.snb.2011.11.070
Chen G, Guo Z, Zeng G, Tang L (2015) Fluorescent and colorimetric sensors for environmental mercury detection. Analyst 140:5400–5443
pubmed: 26086377
doi: 10.1039/C5AN00389J
Kathiravan A, Gowri A, Khamrang T, Kumar MD, Dhenadhayalan N, Lin K-C, Velusamy M, Jaccob M (2019) Pyrene-based chemosensor for picric acid—fundamentals to smartphone device design. Anal Chem 91:13244–13250
pubmed: 31542920
doi: 10.1021/acs.analchem.9b03695
Bhalla V, Gupta A, Kumar M, Rao DSS, Prasad SK (2013) Self-assembled pentacenequinone derivative for trace detection of picric acid. ACS Appl Mater Interfaces 5:672–679
pubmed: 23317496
doi: 10.1021/am302132h
Venkatramaiah N, Kumar S, Patil S (2012) Fluoranthene based fluorescent chemosensors for detection of explosive nitroaromatics. Chem Commun 48:5007–5009
doi: 10.1039/c2cc31606d
Beyer C, Böhme U, Pietzsch C, Roewer G (2002) Preparation, characterization and properties of dipolar 1,2-N, N-dimethylaminomethylferrocenylsilanes. J Organomet Chem 654:187–201
doi: 10.1016/S0022-328X(02)01427-4
Letzel S, Göen T, Bader M, Angerer J, Kraus T (2003) Exposure to nitroaromatic explosives and health effects during disposal of military waste. Occup Environ Med 60:483–488
pubmed: 12819281
pmcid: 1740576
doi: 10.1136/oem.60.7.483
Ashbrook PC, Houts TA (2003) Picric acid Chem Health Saf 10:27–125
Hussain S, Malik AH, Afroz MA, Iyer PK (2015) Ultrasensitive detection of nitroexplosive – picric acid via a conjugated polyelectrolyte in aqueous media and solid support. Chem Commun 51:7207–7210
doi: 10.1039/C5CC02194D
Maity S, Shyamal M, Das D, Mazumdar P, Sahoo GP, Misra A (2017) Aggregation induced emission enhancement from antipyrine-based schiff base and its selective sensing towards picric acid. Sens Actuators B Chem 248:223–233
doi: 10.1016/j.snb.2017.03.161
Karunasagar D, Arunachalam J, Gangadharan S (1998) Development of a ‘collect and punch’ cold vapour inductively coupled plasma mass spectrometric method for the direct determination of mercury at nanograms per litre levels. J Anal At Spectrom 13:679–682
doi: 10.1039/A802132E
Barriada JL, Tappin AD, Evans EH, Achterberg EP (2007) Dissolved silver measurements in seawater. TrAC, Trends Anal Chem 26:809–817
doi: 10.1016/j.trac.2007.06.004
Huang Y, He N, Wang Y, Zhang L, Kang Q, Wang Y, Shen D, Choo J, Chen L (2019) Detection of hypochlorous acid fluctuation via a selective near-infrared fluorescent probe in living cells and in vivo under hypoxic stress. J Mater Chem B 7:2557–2564
pubmed: 32255132
doi: 10.1039/C9TB00079H
Mondal T, Mondal I, Biswas S, Mane MV, Panja SS (2020) Mechanistic insight into selective sensing of hazardous Hg
doi: 10.1002/slct.202001798
Mondal T, Roy S, Mondal I, Mane MV, Panja SS (2021) Deeper insight into the multifaceted photodynamics of a potential organic functional material emphasizing aggregation induced emission enhancement (AIEE) properties. J Photochem Photobiol A Chem 406:112998
doi: 10.1016/j.jphotochem.2020.112998
Barqawi KR, Murtaza Z, Meyer TJ (1991) Calculation of relative nonradiative decay rate constants from emission spectral profiles: polypyridyl complexes of ruthenium(II). J Phys Chem 95:47–50
doi: 10.1021/j100154a013
Lakowicz JR (2006) Principles of fluorescence spectroscopy. Plenum, New York
doi: 10.1007/978-0-387-46312-4
Silori Y, De AK (2019) Tuning effect of local environment to control mechanism of fluorescence depolarization: Rotational diffusion and resonance energy transfer within homo-aggregates of xanthenes. J Photochem Photobiol A Chem 377:198–206
doi: 10.1016/j.jphotochem.2019.04.006
Mondal T, Biswas S, Mane MV, Panja SS (2023) Deciphering swift reversal of multifaceted photodynamics of a novel pyrene appended unsymmetrical salicylaldehyde azine derivative in aqueous and protein environments. New J Chem 47:5280–5300
doi: 10.1039/D2NJ04809D
Sarkar S, Roy S, Sikdar A, Saha RN, Panja SS (2013) A pyrene-based simple but highly selective fluorescence sensor for Cu
pubmed: 24133674
doi: 10.1039/c3an00928a
Morris JV, Mahaney MA, Huber JR (1976) Fluorescence quantum yield determinations. 9,10-Diphenylanthracene as a reference standard in different solvents. J Phys Chem 80:969–974
doi: 10.1021/j100550a010
Wang L, Qin W, Tang X, Dou W, Liu W, Teng Q, Yao X (2010) A selective, cell-permeable fluorescent probe for Al
pubmed: 20617258
doi: 10.1039/c0ob00123f
Maity A, Mazumdar P, Samanta S, Das D, Shyamal M, Sahoo GP, Misra A (2016) Morphology directing synthesis of 1-aminopyrene microstructures and its super quenching effect towards nitro aromatics. J Mol Liq 221:358–367
doi: 10.1016/j.molliq.2016.06.012
Frisch MJ (2013) Gaussian 09, revison D.01, Gaussian inc., Wallingford, CT
Schäfer A, Horn H, Ahlrichs R (1992) Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J Chem Phys 97:2571–2577
doi: 10.1063/1.463096
Häussermann U, Dolg M, Stoll H, Preuss H, Schwerdtfeger P, Pitzer RM (1993) Accuracy of energy-adjusted quasirelativistic ab initio pseudopotentials. Mol Phys 78:1211–1224
doi: 10.1080/00268979300100801
Das S, Sahana A, Banerjee A, Lohar S, Safin DA, Babashkina MG, Bolte M, Garcia Y, Hauli I, Mukhopadhyay SK, Das D (2013) Ratiometric fluorescence sensing and intracellular imaging of Al
pubmed: 23426128
doi: 10.1039/c3dt32908a
Samanta S, Manna U, Ray T, Das G (2015) An aggregation-induced emission (AIE) active probe for multiple targets: a fluorescent sensor for Zn
pubmed: 26467383
doi: 10.1039/C5DT03186A
Sarkar S, Mondal T, Roy S, Saha R, Ghosh AK, Panja SS (2018) A multi-responsive thiosemicarbazone-based probe for detection and discrimination of group 12 metal ions and its application in logic gates. New J Chem 42:15157–15169
doi: 10.1039/C8NJ02011F
Roy S, Mondal T, Dey D, Mane MV, Panja SS (2021) A new thiophene-appended fluorescein-hydrazone-based chromo-fluorogenic sensor for the screening of Hg
doi: 10.1002/slct.202102692
Samanta S, Goswami S, Hoque MN, Ramesh A, Das G (2014) An aggregation-induced emission (AIE) active probe renders Al(III) sensing and tracking of subsequent interaction with DNA. Chem Commun 50:11833–11836
doi: 10.1039/C4CC05093B
Li K, Feng Q, Niu G, Zhang W, Li Y, Kang M, Xu K, He J, Hou H, Tang BZ (2018) Benzothiazole-based AIEgen with tunable excited-state intramolecular proton transfer and restricted intramolecular rotation processes for highly sensitive physiological pH sensing. ACS Sens 3:920–928
pubmed: 29667395
doi: 10.1021/acssensors.7b00820
Benesi HA, Hildebrand JH (1949) A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc 71:2703–2707
doi: 10.1021/ja01176a030
Mahajan PG, Dige NC, Vanjare BD, Han Y, Kim SJ, Hong S-K, Lee KH (2018) Intracellular imaging of zinc ion in living cells by fluorescein based organic nanoparticles. Sens Actuators B Chem 267:119–128
doi: 10.1016/j.snb.2018.03.186
Sandhu S, Kumar R, Singh P, Mahajan A, Kaur M, Kumar S (2015) Ultratrace detection of nitroaromatics: Picric acid responsive aggregation/disaggregation of self-assembled p-terphenylbenzimidazolium-based molecular baskets. ACS Appl Mater Interfaces 7:10491–10500
pubmed: 25915852
doi: 10.1021/acsami.5b01970
Sikdar A, Roy S, Mahto RB, Mukhopadhyay SS, Haldar K, Panja SS (2018) Ratiometric fluorescence sensing of Cu(II): Elucidation of FRET mechanism and bio-imaging application. ChemistrySelect 3:13103–13109
doi: 10.1002/slct.201802818