Plasmodium berghei oocysts possess fatty acid synthesis and scavenging routes.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
05 08 2023
05 08 2023
Historique:
received:
29
05
2023
accepted:
29
07
2023
medline:
7
8
2023
pubmed:
6
8
2023
entrez:
5
8
2023
Statut:
epublish
Résumé
Malaria parasites carry out fatty acid synthesis (FAS) in their apicoplast organelle via a bacterially related (type II) enzymatic pathway. In the vertebrate host, exoerythrocytic Plasmodium stages rely on FAS, whereas intraerythrocytic stages depend on scavenging FA from their environment. In the mosquito, P. falciparum oocysts express and rely on FAS enzymes for sporozoite formation, but P. yoelii oocysts do not express, nor depend on, FAS enzymes and thus rely on FA scavenging to support sporogony. In P. berghei, FAS enzymes are similarly expendable for sporogony, indicating it conforms to the P. yoelii scenario. We show here that P. berghei, unexpectedly, expresses FAS enzymes throughout oocyst development. These findings indicate that P. berghei can employ FAS alongside FA scavenging to maximise sporogony and transmission, and is more similar to P. falciparum than previously assumed with respect to FA acquisition by the oocyst. The ability of oocysts to switch between FAS and scavenging could be an important factor in the non-competitive relationship of resource exploitation between Plasmodium parasites and their mosquito vectors, which shapes parasite virulence both in the insect and vertebrate.
Identifiants
pubmed: 37543672
doi: 10.1038/s41598-023-39708-z
pii: 10.1038/s41598-023-39708-z
pmc: PMC10404217
doi:
Substances chimiques
Fatty Acids
0
Protozoan Proteins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
12700Subventions
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/V006428
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/P021611
Pays : United Kingdom
Informations de copyright
© 2023. Springer Nature Limited.
Références
Stanway, R. R. et al. Genome-scale identification of essential metabolic processes for targeting the Plasmodium liver stage. Cell 179, 1112–1128 e1126. https://doi.org/10.1016/j.cell.2019.10.030 (2019).
doi: 10.1016/j.cell.2019.10.030
pubmed: 31730853
pmcid: 6904910
Yu, M. et al. The fatty acid biosynthesis enzyme FabI plays a key role in the development of liver-stage malarial parasites. Cell Host. Microbe. 4, 567–578. https://doi.org/10.1016/j.chom.2008.11.001 (2008).
doi: 10.1016/j.chom.2008.11.001
pubmed: 19064257
pmcid: 2646117
Vaughan, A. M. et al. Type II fatty acid synthesis is essential only for malaria parasite late liver stage development. Cell Microbiol. 11, 506–520. https://doi.org/10.1111/j.1462-5822.2008.01270.x (2009).
doi: 10.1111/j.1462-5822.2008.01270.x
pubmed: 19068099
van Schaijk, B. C. et al. Type II fatty acid biosynthesis is essential for Plasmodium falciparum sporozoite development in the midgut of Anopheles mosquitoes. Eukaryot. Cell 13, 550–559. https://doi.org/10.1128/EC.00264-13 (2014).
doi: 10.1128/EC.00264-13
pubmed: 24297444
pmcid: 4060470
Costa, G. et al. Non-competitive resource exploitation within mosquito shapes within-host malaria infectivity and virulence. Nat. Commun. 9, 3474. https://doi.org/10.1038/s41467-018-05893-z (2018).
doi: 10.1038/s41467-018-05893-z
pubmed: 30150763
pmcid: 6110728
Habtewold, T. et al. Plasmodium oocysts respond with dormancy to crowding and nutritional stress. Sci. Rep. 11, 3090. https://doi.org/10.1038/s41598-021-81574-0 (2021).
doi: 10.1038/s41598-021-81574-0
pubmed: 33542254
pmcid: 7862253
Werling, K. et al. Steroid hormone function controls non-competitive Plasmodium development in Anopheles. Cell 177, 315–325 e314. https://doi.org/10.1016/j.cell.2019.02.036 (2019).
doi: 10.1016/j.cell.2019.02.036
pubmed: 30929905
pmcid: 6450776
Shaw, W. R. et al. Multiple blood feeding in mosquitoes shortens the Plasmodium falciparum incubation period and increases malaria transmission potential. PLoS Pathog. 16, 131. https://doi.org/10.1371/journal.ppat.1009131 (2020).
doi: 10.1371/journal.ppat.1009131
Kwon, H., Simoes, M. L., Reynolds, R. A., Dimopoulos, G. & Smith, R. C. Additional feeding reveals differences in immune recognition and growth of Plasmodium parasites in the mosquito host. mSphere https://doi.org/10.1128/mSphere.00136-21 (2021).
doi: 10.1128/mSphere.00136-21
pubmed: 33789941
pmcid: 8546690
Saeed, S., Tremp, A. Z., Sharma, V., Lasonder, E. & Dessens, J. T. NAD(P) transhydrogenase has vital non-mitochondrial functions in malaria parasite transmission. EMBO Rep. 21, e47832. https://doi.org/10.15252/embr.201947832 (2020).
doi: 10.15252/embr.201947832
pubmed: 31951090
pmcid: 7054674
Otto, T. D. et al. A comprehensive evaluation of rodent malaria parasite genomes and gene expression. BMC Biol. 12, 86. https://doi.org/10.1186/s12915-014-0086-0 (2014).
doi: 10.1186/s12915-014-0086-0
pubmed: 25359557
pmcid: 4242472
Stanway, R. R., Witt, T., Zobiak, B., Aepfelbacher, M. & Heussler, V. T. GFP-targeting allows visualization of the apicoplast throughout the life cycle of live malaria parasites. Biol. Cell 101, 415–430. https://doi.org/10.1042/BC20080202 (2009).
doi: 10.1042/BC20080202
pubmed: 19143588
Saeed, S., Lau, C. I., Tremp, A. Z., Crompton, T. & Dessens, J. T. Dysregulated gene expression in oocysts of Plasmodium berghei LAP mutants. Mol. Biochem. Parasitol. 229, 1–5. https://doi.org/10.1016/j.molbiopara.2019.02.001 (2019).
doi: 10.1016/j.molbiopara.2019.02.001
pubmed: 30753856
pmcid: 6452916
Yeoh, L. M., Goodman, C. D., Mollard, V., McFadden, G. I. & Ralph, S. A. Comparative transcriptomics of female and male gametocytes in Plasmodium berghei and the evolution of sex in alveolates. BMC Genomics 18, 734. https://doi.org/10.1186/s12864-017-4100-0 (2017).
doi: 10.1186/s12864-017-4100-0
pubmed: 28923023
pmcid: 5604118
Mair, G. R. et al. Regulation of sexual development of Plasmodium by translational repression. Science 313, 667–669. https://doi.org/10.1126/science.1125129 (2006).
doi: 10.1126/science.1125129
pubmed: 16888139
pmcid: 1609190
Guttery, D. S. et al. Plasmodium DEH is ER-localized and crucial for oocyst mitotic division during malaria transmission. Life Sci. Alliance https://doi.org/10.2650/lsa.202000879 (2020).
doi: 10.2650/lsa.202000879
pubmed: 33106323
pmcid: 7652392
Rono, M. K., Whitten, M. M., Oulad-Abdelghani, M., Levashina, E. A. & Marois, E. The major yolk protein vitellogenin interferes with the anti-Plasmodium response in the malaria mosquito Anopheles gambiae. PLoS Biol. 8, e100034. https://doi.org/10.1371/journal.pbio.1000434 (2010).
doi: 10.1371/journal.pbio.1000434
Khater, E. I., Sinden, R. E. & Dessens, J. T. A malaria membrane skeletal protein is essential for normal morphogenesis, motility, and infectivity of sporozoites. J. Cell Biol. 167, 425–432 (2004).
doi: 10.1083/jcb.200406068
pubmed: 15533999
pmcid: 2172497
Dessens, J. T. et al. CTRP is essential for mosquito infection by malaria ookinetes. EMBO J. 18, 6221–6227 (1999).
doi: 10.1093/emboj/18.22.6221
pubmed: 10562534
pmcid: 1171685
Arai, M. et al. Both mosquito-derived xanthurenic acid and a host blood-derived factor regulate gametogenesis of Plasmodium in the midgut of the mosquito. Mol. Biochem. Parasitol. 116, 17–24 (2001).
doi: 10.1016/S0166-6851(01)00299-7
pubmed: 11463462
Waters, A. P., Thomas, A. W., van Dijk, M. R. & Janse, C. J. Transfection of malaria parasites. Methods 13, 134–147 (1997).
doi: 10.1006/meth.1997.0506
pubmed: 9405197
Janse, C. J., Ramesar, J. & Waters, A. P. High-efficiency transfection and drug selection of genetically transformed blood stages of the rodent malaria parasite Plasmodium berghei. Nat. Protoc. 1, 346–356 (2006).
doi: 10.1038/nprot.2006.53
pubmed: 17406255