Crossmodal visual predictions elicit spatially specific early visual cortex activity but later than real visual stimuli.
ERP
crossmodal prediction
error signal
predictive coding
visual cortex
Journal
Philosophical transactions of the Royal Society of London. Series B, Biological sciences
ISSN: 1471-2970
Titre abrégé: Philos Trans R Soc Lond B Biol Sci
Pays: England
ID NLM: 7503623
Informations de publication
Date de publication:
25 09 2023
25 09 2023
Historique:
pmc-release:
25
09
2024
medline:
8
8
2023
pubmed:
7
8
2023
entrez:
7
8
2023
Statut:
ppublish
Résumé
Previous studies have indicated that crossmodal visual predictions are instrumental in controlling early visual cortex activity. The exact time course and spatial precision of such crossmodal top-down influences on the visual cortex have been unknown. In the present study, participants were exposed to audiovisual combinations comprising one of two sounds and a Gabor patch either in the top left or in the bottom right visual field. Event-related potentials (ERPs) were recorded to these frequent crossmodal combinations (standards) as well as to trials in which the visual stimulus was omitted (omissions) or the visual and auditory stimuli were recombined (deviants). Standards and deviants elicited an ERP between 50 and 100 ms of opposite polarity known as the C1 effect commonly associated with retinotopic processing in early visual cortex. By contrast, a C1 effect was not observed in omission trials. Spatially specific omission and mismatch effects (deviants minus standards) started only later with a latency of 230 ms and 170 ms, respectively. These results suggest that crossmodal visual predictions control visual cortex activity in a spatially specific manner. However, visual predictions do not modulate visual cortex activity with the same timing as visual stimulation activates these areas but rather seem to involve distinct neural mechanisms. This article is part of the theme issue 'Decision and control processes in multisensory perception'.
Identifiants
pubmed: 37545314
doi: 10.1098/rstb.2022.0339
pmc: PMC10404923
doi:
Banques de données
figshare
['10.6084/m9.figshare.c.6736962']
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
20220339Références
J Vis. 2018 Mar 1;18(3):22
pubmed: 29677338
Proc Natl Acad Sci U S A. 2015 Aug 4;112(31):9585-90
pubmed: 26195772
Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20754-9
pubmed: 22147913
Nat Neurosci. 2001 Mar;4(3):304-10
pubmed: 11224548
Cereb Cortex. 2019 May 1;29(5):2261-2278
pubmed: 30877784
Nat Commun. 2017 Jan 05;8:13804
pubmed: 28054544
PLoS Biol. 2020 Dec 7;18(12):e3001023
pubmed: 33284791
J Neurosci. 2014 Jul 16;34(29):9817-24
pubmed: 25031419
Neurodiagn J. 2016;56(4):245-252
pubmed: 28436791
Neural Comput. 1999 Feb 15;11(2):417-41
pubmed: 9950738
Vision Res. 2001;41(10-11):1437-57
pubmed: 11322985
Trends Cogn Sci. 2020 Jan;24(1):13-24
pubmed: 31787500
J Cogn Neurosci. 2014 Jul;26(7):1546-54
pubmed: 24392894
Psychol Sci. 2022 Dec;33(12):2109-2122
pubmed: 36179072
Curr Biol. 2015 Oct 19;25(20):2690-5
pubmed: 26441356
Vision Res. 2008 Feb;48(4):589-97
pubmed: 18177913
Neurosci Lett. 2010 Nov 26;485(3):198-203
pubmed: 20849925
Cogn Neurosci. 2018 Jan - Apr;9(1-2):4-19
pubmed: 28534668
Comput Intell Neurosci. 2011;2011:156869
pubmed: 21253357
J Neurosci. 2010 Dec 8;30(49):16601-8
pubmed: 21147999
Front Hum Neurosci. 2013 Jul 29;7:407
pubmed: 23908618
Cereb Cortex. 2022 Aug 22;32(17):3816-3828
pubmed: 35034125
J Neurosci. 2010 Feb 24;30(8):2960-6
pubmed: 20181593
Neuroimage. 2019 Sep;198:181-197
pubmed: 31103785
Hum Brain Mapp. 2002 Feb;15(2):95-111
pubmed: 11835601
Cereb Cortex. 2009 May;19(5):1175-85
pubmed: 18820290
J Neurosci. 2011 Jun 22;31(25):9118-23
pubmed: 21697363
Brain Res. 2009 Dec 8;1301:89-99
pubmed: 19747463
Electroencephalogr Clin Neurophysiol. 1976 Jan;40(1):33-42
pubmed: 55346
J Neurosci Methods. 2007 Aug 15;164(1):177-90
pubmed: 17517438
Front Hum Neurosci. 2012 Oct 09;6:278
pubmed: 23087632
Neuron. 2012 Nov 21;76(4):695-711
pubmed: 23177956
Trends Cogn Sci. 2018 Sep;22(9):764-779
pubmed: 30122170
Vision Res. 2017 Sep;138:86-96
pubmed: 28768151
Ann N Y Acad Sci. 2020 Mar;1464(1):242-268
pubmed: 32147856
J Neurosci. 2020 Nov 18;40(47):9088-9102
pubmed: 33087476
Cereb Cortex. 2003 May;13(5):486-99
pubmed: 12679295
Neuron. 2017 Jul 5;95(1):209-220.e3
pubmed: 28625487
Curr Biol. 2016 Feb 8;26(3):371-6
pubmed: 26832438
Hum Brain Mapp. 2009 May;30(5):1723-33
pubmed: 18711710
J Neurosci. 2009 Jul 1;29(26):8447-51
pubmed: 19571135
Nature. 1998 Sep 24;395(6700):376-81
pubmed: 9759726
Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22456-61
pubmed: 20007778
Nat Neurosci. 1999 Apr;2(4):364-9
pubmed: 10204544
Vision Res. 2001;41(10-11):1423-35
pubmed: 11322984
Psychophysiology. 2019 Jun;56(6):e13335
pubmed: 30657176
Spat Vis. 1997;10(4):433-6
pubmed: 9176952
Electroencephalogr Clin Neurophysiol. 1968 Aug;25(2):119-22
pubmed: 4176523
Neuron. 2018 Oct 24;100(2):424-435
pubmed: 30359606
Cereb Cortex. 2008 Nov;18(11):2629-36
pubmed: 18321874
Hum Brain Mapp. 2012 Jan;33(1):63-74
pubmed: 21438076
J Neurosci. 2012 Sep 26;32(39):13389-95
pubmed: 23015429
J Neurosci. 2013 Jan 23;33(4):1400-10
pubmed: 23345216
Nat Commun. 2019 Aug 1;10(1):3440
pubmed: 31371713
Hum Brain Mapp. 2012 Jun;33(6):1334-51
pubmed: 21500317
Brain Res. 2011 Jun 29;1398:64-71
pubmed: 21636075
Biol Psychol. 1976 Mar;4(1):65-77
pubmed: 938708
Philos Trans R Soc Lond B Biol Sci. 2023 Sep 25;378(1886):20220339
pubmed: 37545314
Front Hum Neurosci. 2014 Sep 16;8:666
pubmed: 25278859
J Neurosci Methods. 2004 Mar 15;134(1):9-21
pubmed: 15102499