Intraarterial Transplantation of Mitochondria After Ischemic Stroke Reduces Cerebral Infarction.
Journal
Stroke (Hoboken, N.J.)
ISSN: 2694-5746
Titre abrégé: Stroke Vasc Interv Neurol
Pays: United States
ID NLM: 9918335088706676
Informations de publication
Date de publication:
May 2023
May 2023
Historique:
pmc-release:
01
05
2024
medline:
7
8
2023
pubmed:
7
8
2023
entrez:
7
8
2023
Statut:
ppublish
Résumé
Transplantation of autologous mitochondria into ischemic tissue may mitigate injury caused by ischemia and reperfusion. Using murine stroke models of middle cerebral artery occlusion, we sought to evaluate feasibility of delivery of viable mitochondria to ischemic brain parenchyma. We evaluated the effects of concurrent focused ultrasound activation of microbubbles, which serves to open the blood-brain barrier, on efficacy of delivery of mitochondria. Following intra-arterial delivery, mitochondria distribute through the stroked hemisphere and integrate into neural and glial cells in the brain parenchyma. Consistent with functional integration in the ischemic tissue, the transplanted mitochondria elevate concentration of adenosine triphosphate in the stroked hemisphere, reduce infarct volume and increase cell viability. Additional of focused ultrasound leads to improved blood brain barrier opening without hemorrhagic complications. Our results have implications for the development of interventional strategies after ischemic stroke and suggest a novel potential modality of therapy after mechanical thrombectomy.
Sections du résumé
Background-
UNASSIGNED
Transplantation of autologous mitochondria into ischemic tissue may mitigate injury caused by ischemia and reperfusion.
Methods-
UNASSIGNED
Using murine stroke models of middle cerebral artery occlusion, we sought to evaluate feasibility of delivery of viable mitochondria to ischemic brain parenchyma. We evaluated the effects of concurrent focused ultrasound activation of microbubbles, which serves to open the blood-brain barrier, on efficacy of delivery of mitochondria.
Results-
UNASSIGNED
Following intra-arterial delivery, mitochondria distribute through the stroked hemisphere and integrate into neural and glial cells in the brain parenchyma. Consistent with functional integration in the ischemic tissue, the transplanted mitochondria elevate concentration of adenosine triphosphate in the stroked hemisphere, reduce infarct volume and increase cell viability. Additional of focused ultrasound leads to improved blood brain barrier opening without hemorrhagic complications.
Conclusions-
UNASSIGNED
Our results have implications for the development of interventional strategies after ischemic stroke and suggest a novel potential modality of therapy after mechanical thrombectomy.
Identifiants
pubmed: 37545759
doi: 10.1161/svin.122.000644
pmc: PMC10399028
mid: NIHMS1868004
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : NIBIB NIH HHS
ID : R01 EB020147
Pays : United States
Organisme : NIBIB NIH HHS
ID : R21 EB024323
Pays : United States
Organisme : NINDS NIH HHS
ID : R21 NS116431
Pays : United States
Organisme : NCATS NIH HHS
ID : UH3 TR000891
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS105692
Pays : United States
Déclaration de conflit d'intérêts
DECLARATION OF INTERESTS AND DISCLOSURES The authors declare no competing financial interests or disclosures.
Références
Brain Res. 2006 Oct 20;1116(1):159-65
pubmed: 16952339
Mitochondrion. 2019 May;46:103-115
pubmed: 29588218
J Control Release. 2014 Sep 10;189:123-132
pubmed: 24979210
J Control Release. 2016 Feb 10;223:109-117
pubmed: 26732553
J Thorac Cardiovasc Surg. 2017 Jul;154(1):286-289
pubmed: 28283239
Mitochondrion. 2017 May;34:127-134
pubmed: 28342934
Am J Physiol Heart Circ Physiol. 2009 Jan;296(1):H94-H105
pubmed: 18978192
Proc Natl Acad Sci U S A. 2014 Jul 1;111(26):9633-8
pubmed: 24979790
J Neurosci Methods. 2017 Aug 01;287:1-12
pubmed: 28554833
Mitochondrion. 2019 Jan;44:20-26
pubmed: 29274400
J Clin Invest. 2000 Sep;106(6):723-31
pubmed: 10995780
AJR Am J Roentgenol. 2015 Jul;205(1):150-9
pubmed: 26102394
Clin Transl Med. 2016 Mar;5(1):16
pubmed: 27130633
Mitochondrion. 2019 Sep;48:16-30
pubmed: 30771504
Behav Brain Res. 2019 Jan 1;356:322-331
pubmed: 30213662
Nat Med. 2011 Nov 07;17(11):1391-401
pubmed: 22064429
Am J Physiol Heart Circ Physiol. 2013 Apr 1;304(7):H966-82
pubmed: 23355340
J Control Release. 2015 Dec 10;219:61-75
pubmed: 26362698
Curr Cardiol Rep. 2019 Aug 30;21(10):112
pubmed: 31471811
Shock. 2013 Mar;39(3):304-10
pubmed: 23364428
J Appl Physiol (1985). 2013 Jan 15;114(2):161-71
pubmed: 23104694
AJNR Am J Neuroradiol. 2001 Aug;22(7):1275-81
pubmed: 11498414
Am J Cardiovasc Drugs. 2013 Feb;13(1):57-69
pubmed: 23381911
Circulation. 2019 Mar 5;139(10):e56-e528
pubmed: 30700139
NPJ Regen Med. 2020 Nov 23;5(1):22
pubmed: 33298971
J Biol Chem. 2014 Apr 25;289(17):12005-12015
pubmed: 24644293
Nature. 2006 Oct 19;443(7113):787-95
pubmed: 17051205
Stroke. 2012 Feb;43(2):607-15
pubmed: 22207505
Oncotarget. 2016 Aug 2;7(31):48925-48940
pubmed: 27419637
Nature. 2016 Jul 27;535(7613):551-5
pubmed: 27466127
Stroke. 2018 Mar;49(3):e46-e110
pubmed: 29367334
Development. 2018 Oct 26;145(20):
pubmed: 30237244
FASEB J. 2020 Mar;34(3):3616-3630
pubmed: 31957088
PLoS One. 2016 Aug 08;11(8):e0160889
pubmed: 27500955
Mitochondrion. 2017 Jul;35:70-79
pubmed: 28533168
Stroke. 2020 Oct;51(10):3142-3146
pubmed: 32819193
PLoS One. 2016 Feb 12;11(2):e0148503
pubmed: 26870954
J Histochem Cytochem. 1996 Dec;44(12):1363-72
pubmed: 8985128
J Vis Exp. 2014 Sep 06;(91):e51682
pubmed: 25225817
Theranostics. 2017 Aug 23;7(15):3608-3623
pubmed: 29109764
JAMA Neurol. 2018 Jan 1;75(1):119-122
pubmed: 29159397