Transfer learning to leverage larger datasets for improved prediction of protein stability changes.
Journal
bioRxiv : the preprint server for biology
Titre abrégé: bioRxiv
Pays: United States
ID NLM: 101680187
Informations de publication
Date de publication:
30 Jul 2023
30 Jul 2023
Historique:
pubmed:
7
8
2023
medline:
7
8
2023
entrez:
7
8
2023
Statut:
epublish
Résumé
Amino acid mutations that lower a protein's thermodynamic stability are implicated in numerous diseases, and engineered proteins with enhanced stability are important in research and medicine. Computational methods for predicting how mutations perturb protein stability are therefore of great interest. Despite recent advancements in protein design using deep learning,
Identifiants
pubmed: 37547004
doi: 10.1101/2023.07.27.550881
pmc: PMC10402116
pii:
doi:
Types de publication
Preprint
Langues
eng
Subventions
Organisme : NIGMS NIH HHS
ID : R35 GM131923
Pays : United States