Modeling orientation perception adaptation to altered gravity environments with memory of past sensorimotor states.
Bayesian
astronaut
internal model (IM)
multisensory integration (MSI)
otolith
vestibular
Journal
Frontiers in neural circuits
ISSN: 1662-5110
Titre abrégé: Front Neural Circuits
Pays: Switzerland
ID NLM: 101477940
Informations de publication
Date de publication:
2023
2023
Historique:
received:
21
03
2023
accepted:
29
06
2023
medline:
8
8
2023
pubmed:
7
8
2023
entrez:
7
8
2023
Statut:
epublish
Résumé
Transitioning between gravitational environments results in a central reinterpretation of sensory information, producing an adapted sensorimotor state suitable for motor actions and perceptions in the new environment. Critically, this central adaptation is not instantaneous, and complete adaptation may require weeks of prolonged exposure to novel environments. To mitigate risks associated with the lagging time course of adaptation (e.g., spatial orientation misperceptions, alterations in locomotor and postural control, and motion sickness), it is critical that we better understand sensorimotor states during adaptation. Recently, efforts have emerged to model human perception of orientation and self-motion during sensorimotor adaptation to new gravity stimuli. While these nascent computational frameworks are well suited for modeling exposure to novel gravitational stimuli, they have yet to distinguish how the central nervous system (CNS) reinterprets sensory information from familiar environmental stimuli (i.e., readaptation). Here, we present a theoretical framework and resulting computational model of vestibular adaptation to gravity transitions which captures the role of implicit memory. This advancement enables faster readaptation to familiar gravitational stimuli, which has been observed in repeat flyers, by considering vestibular signals dependent on the new gravity environment, through Bayesian inference. The evolution and weighting of hypotheses considered by the CNS is modeled via a Rao-Blackwellized particle filter algorithm. Sensorimotor adaptation learning is facilitated by retaining a memory of past harmonious states, represented by a conditional state transition probability density function, which allows the model to consider previously experienced gravity levels (while also dynamically learning new states) when formulating new alternative hypotheses of gravity. In order to demonstrate our theoretical framework and motivate future experiments, we perform a variety of simulations. These simulations demonstrate the effectiveness of this model and its potential to advance our understanding of transitory states during which central reinterpretation occurs, ultimately mitigating the risks associated with the lagging time course of adaptation to gravitational environments.
Identifiants
pubmed: 37547052
doi: 10.3389/fncir.2023.1190582
pmc: PMC10399228
doi:
Types de publication
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
1190582Informations de copyright
Copyright © 2023 Allred, Kravets, Ahmed and Clark.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
J Neurophysiol. 2002 Feb;87(2):819-33
pubmed: 11826049
Proc R Soc Lond B Biol Sci. 1982 Nov 22;216(1205):427-59
pubmed: 6129637
Cereb Cortex. 2022 Feb 8;32(4):755-769
pubmed: 34416764
Brain Res Brain Res Rev. 1998 Nov;28(1-2):102-17
pubmed: 9795167
Acta Otolaryngol. 1968;:Suppl 230:1-20
pubmed: 5650275
Exp Brain Res. 2010 May;202(3):649-59
pubmed: 20135100
Aviat Space Environ Med. 1985 Jun;56(6):601-6
pubmed: 3874622
J Neurosci. 2009 Aug 26;29(34):10499-511
pubmed: 19710303
J Vestib Res. 2003;13(4-6):309-20
pubmed: 15096674
J Neurophysiol. 2008 May;99(5):2264-80
pubmed: 18337369
Neuroscience. 2006 May 12;139(2):767-77
pubmed: 16458438
NPJ Microgravity. 2022 Jul 20;8(1):27
pubmed: 35858981
J Neural Eng. 2005 Sep;2(3):S147-63
pubmed: 16135881
Aerosp Med Hum Perform. 2015 Dec;86(12 Suppl):A45-A53
pubmed: 26630195
Nature. 1999 Apr 15;398(6728):615-8
pubmed: 10217143
J Neurophysiol. 2009 Mar;101(3):1321-33
pubmed: 19118112
Front Syst Neurosci. 2015 Apr 16;9:59
pubmed: 25932009
Brain Res Bull. 1998 Nov 15;47(5):537-42
pubmed: 10052585
J Neurophysiol. 2000 Oct;84(4):2001-15
pubmed: 11024093
J Neurophysiol. 2001 Apr;85(4):1648-60
pubmed: 11287488
Annu Rev Neurosci. 2002;25:563-93
pubmed: 12052921
Front Syst Neurosci. 2015 May 05;9:68
pubmed: 25999822
Auton Neurosci. 2006 Oct 30;129(1-2):77-9
pubmed: 16935570
Nat Neurosci. 2015 Sep;18(9):1310-7
pubmed: 26237366
Aviat Space Environ Med. 1988 Dec;59(12):1185-9
pubmed: 3240221
J Neurophysiol. 2018 Dec 1;120(6):3110-3121
pubmed: 30332330
Prog Brain Res. 2019;248:65-90
pubmed: 31239146
J Vestib Res. 1998 Jan-Feb;8(1):67-70
pubmed: 9416592
Exp Brain Res. 2015 May;233(5):1409-20
pubmed: 25651980
J Neurosci. 2009 Dec 9;29(49):15601-12
pubmed: 20007484
J Neurosci. 2004 Mar 3;24(9):2102-11
pubmed: 14999061
Front Neural Circuits. 2021 Oct 15;15:757817
pubmed: 34720889
Nat Neurosci. 2018 Oct;21(10):1442-1451
pubmed: 30224803
Exp Brain Res. 2014 Aug;232(8):2483-92
pubmed: 24838552
Nat Neurosci. 1999 Jan;2(1):79-87
pubmed: 10195184
J Neurophysiol. 2015 Apr 1;113(7):2062-77
pubmed: 25540216
J Neurophysiol. 2009 Jan;101(1):141-9
pubmed: 18971293
J Neurophysiol. 2018 Dec 1;120(6):3187-3197
pubmed: 30379610
Exp Brain Res. 2006 Nov;175(3):377-99
pubmed: 17021896
J Vestib Res. 1993 Fall;3(3):259-73
pubmed: 8275261
Wiley Interdiscip Rev Cogn Sci. 2011 Sep;2(5):580-593
pubmed: 26302308
Acta Otolaryngol Suppl. 1982;392:1-44
pubmed: 6303041
Nature. 2004 Jan 15;427(6971):244-7
pubmed: 14724638
Front Syst Neurosci. 2021 Feb 09;15:634604
pubmed: 33633547
Gait Posture. 2002 Feb;15(1):75-82
pubmed: 11809583
Front Neural Circuits. 2021 Oct 26;15:723504
pubmed: 34764856
Science. 1984 Jul 13;225(4658):205-8
pubmed: 6610215
Exp Brain Res. 2000 Sep;134(1):96-106
pubmed: 11026731
J Vestib Res. 1993 Summer;3(2):141-61
pubmed: 8275250
J Neurophysiol. 2012 Jul;108(2):390-405
pubmed: 22514288
Front Physiol. 2023 Feb 15;14:1082166
pubmed: 36875024
J Physiol. 1976 Apr;256(2):381-414
pubmed: 16992508
Aerosp Med Hum Perform. 2017 Jul 1;88(7):682-687
pubmed: 28641686
Acta Astronaut. 1987;15(1):55-66
pubmed: 11538841
Aerosp Med. 1964 Aug;35:764-72
pubmed: 14215796