RobustCCC: a robustness evaluation tool for cell-cell communication methods.

RobustCCC cell-cell communication evaluation robustness scRNA-seq

Journal

Frontiers in genetics
ISSN: 1664-8021
Titre abrégé: Front Genet
Pays: Switzerland
ID NLM: 101560621

Informations de publication

Date de publication:
2023
Historique:
received: 08 06 2023
accepted: 11 07 2023
medline: 7 8 2023
pubmed: 7 8 2023
entrez: 7 8 2023
Statut: epublish

Résumé

Cell-cell communication (CCC) inference has become a routine task in single-cell data analysis. Many computational tools are developed for this purpose. However, the robustness of existing CCC methods remains underexplored. We develop a user-friendly tool, RobustCCC, to facilitate the robustness evaluation of CCC methods with respect to three perspectives, including replicated data, transcriptomic data noise and prior knowledge noise. RobustCCC currently integrates 14 state-of-the-art CCC methods and 6 simulated single-cell transcriptomics datasets to generate robustness evaluation reports in tabular form for easy interpretation. We find that these methods exhibit substantially different robustness performances using different simulation datasets, implying a strong impact of the input data on resulting CCC patterns. In summary, RobustCCC represents a scalable tool that can easily integrate more CCC methods, more single-cell datasets from different species (e.g., mouse and human) to provide guidance in selecting methods for identification of consistent and stable CCC patterns in tissue microenvironments. RobustCCC is freely available at https://github.com/GaoLabXDU/RobustCCC.

Identifiants

pubmed: 37547470
doi: 10.3389/fgene.2023.1236956
pii: 1236956
pmc: PMC10400800
doi:

Types de publication

Journal Article

Langues

eng

Pagination

1236956

Informations de copyright

Copyright © 2023 Zhang, Gao, Hu and Huang.

Déclaration de conflit d'intérêts

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Références

Nat Methods. 2023 Feb;20(2):218-228
pubmed: 36690742
Nature. 2021 Oct;598(7879):214-219
pubmed: 34616064
RNA. 2016 Jun;22(6):839-51
pubmed: 27022035
Annu Rev Cell Dev Biol. 2019 Oct 6;35:615-635
pubmed: 31590587
Genome Biol. 2020 Jan 16;21(1):12
pubmed: 31948481
Nucleic Acids Res. 2021 Sep 7;49(15):8520-8534
pubmed: 34331449
Cell Death Dis. 2019 Jun 20;10(7):487
pubmed: 31221990
Genome Biol. 2020 Feb 7;21(1):31
pubmed: 32033589
Nat Commun. 2020 Apr 29;11(1):2084
pubmed: 32350282
Nat Commun. 2021 Feb 17;12(1):1089
pubmed: 33597528
Cell. 2010 May 14;141(4):559-63
pubmed: 20478246
Nat Methods. 2020 Feb;17(2):159-162
pubmed: 31819264
Sci Adv. 2021 Apr 14;7(16):
pubmed: 33853780
Nat Commun. 2020 Oct 6;11(1):5011
pubmed: 33024107
Nat Methods. 2017 May;14(5):483-486
pubmed: 28346451
Science. 1992 Mar 27;255(5052):1671-7
pubmed: 1313187
Nature. 2017 Nov 8;551(7679):192-197
pubmed: 29120426
Sci Rep. 2017 Aug 18;7(1):8815
pubmed: 28821810
Genome Biol. 2022 Mar 7;23(1):73
pubmed: 35255944
Brief Bioinform. 2021 Mar 22;22(2):1511-1512
pubmed: 33448287
Nat Commun. 2022 Jul 30;13(1):4429
pubmed: 35908020
Nat Rev Neurosci. 2006 Jan;7(1):41-53
pubmed: 16371949
Nat Commun. 2021 Feb 17;12(1):1088
pubmed: 33597522
Nature. 2022 Jul;607(7919):540-547
pubmed: 35794482
Cell Rep. 2018 Jan 16;22(3):600-610
pubmed: 29346760
Neuron. 2015 Jul 15;87(2):271-96
pubmed: 26182414
Bioinformatics. 2021 Oct 25;37(20):3501-3508
pubmed: 33974001
Nat Rev Genet. 2021 Feb;22(2):71-88
pubmed: 33168968
Genome Biol. 2021 Mar 8;22(1):78
pubmed: 33685491
Nat Commun. 2020 Mar 3;11(1):1169
pubmed: 32127540
Nat Commun. 2019 Aug 29;10(1):3887
pubmed: 31467299
Nucleic Acids Res. 2020 Jan 10;48(1):86-95
pubmed: 31777938
IEEE/ACM Trans Comput Biol Bioinform. 2020 Mar-Apr;17(2):376-389
pubmed: 29994128
Nat Protoc. 2020 Apr;15(4):1484-1506
pubmed: 32103204
PLoS Biol. 2020 Mar 27;18(3):e3000691
pubmed: 32218571
Nat Commun. 2022 Jun 9;13(1):3224
pubmed: 35680885
Nucleic Acids Res. 2020 Jun 4;48(10):e55
pubmed: 32196115
Cell Rep. 2018 Nov 6;25(6):1458-1468.e4
pubmed: 30404002

Auteurs

Chenxing Zhang (C)

School of Computer Science and Technology, Xidian University, Xi'an, China.

Lin Gao (L)

School of Computer Science and Technology, Xidian University, Xi'an, China.

Yuxuan Hu (Y)

School of Computer Science and Technology, Xidian University, Xi'an, China.

Zhengyang Huang (Z)

School of Computer Science and Technology, Xidian University, Xi'an, China.

Classifications MeSH